Overview

- The exam covers all lectures (Chapter 1 – 7)
- The book sections are listed in the lecture notes
- You can bring manual of the instruction and the manual of ports and registers with you in the exam

Chapters 1-5 (Lectures 1-12)

- Refer to the review slides of Midterms 1 & 2

Chapter 6/ Lecture13-Part1

- Busses
 - bus organization
 - interfacing to & controlling memory chip(s)
 - Data transmission behaviors over busses
- Memory
 - Definitions/classifications
 - Multi-chip organization
Chapter 6/ Lecture 13-Part2

- I/O Organization
 - Memory mapped I/O
- Ports
 - Multiple registers (control, status, data)
- HC11 Ports B and C
 - How to configure
 - Command/status registers?
 - Bit Manipulation Instructions

Chapter 6/Lecture 13-Part2

- I/O Synchronization
 - Polled vs. Interrupt Based
 - Pros and Cons
 - How each is implemented (or not!) on the HC11
 - Enabling interrupts
 - The global and the specific enables
 - Interrupt vectors
 - What they do
 - What’s the alternative?
- Hardware Response to an Interrupt
 - Pushing entire state onto stack

Chapter 7/Lecture 14-PartIA

- 4 Main HC Timer Functions
 - Real-Time Interrupt
 - Free-Running Counter
 - Input Capture (time stamping)
 - Output Compare (scheduling)
- RTI, time stamping, and scheduling implementation
 - How to use TCNT
 - Interrupt enabling & interrupt vectors
 - Configurations of relevant control registers

Chapter 7/Lecture 14- PartII

- Serial communication basics
 - Difference between serial and parallel
 - E.g., timing, data width, signaling, data format
 - Parity, Errors
- HC11 Serial Communication
 - SCI operation, configuration
 - What registers are involved?
 - Data/buffer ($102F), shift, control, status registers
 - Interrupt enabling
Chapter 7/Lecture 14-PartIII

- HC11 A/D converter
 - Setup, use
 - Building components
 - Up counter vs. Successive approximation
 - Time: No interrupt
 - Registers involved
 - Configurations

Format

- Probably an even mix of multiple choice, short answer and problem solving.
- Focus on small programming and general concepts rather than nitty-gritty details.
- Even distribution of the semester, no focus on material since last exam.
- I will try to make it take around 1-1.5 hours.

A Few Last Details

- Exam is 8:00 AM on Monday (Dec. 15th), in Fisher 138
- The exam distribution will start as early as 7:55 AM, so we can start at 8:00 AM.
- I will get things graded as quickly as possible.
- Start looking for grades around Friday.