Power Semiconductors

Brian K. Johnson and Herbert L. Hess
University of Idaho
P.O. Box 441023
Moscow, ID 83844-1023 USA

H. Hess and B.K. Johnson
Jan. 29, 2001
Transient Simulation Applications

- Medium to high power applications
- Converter applications include
 - HVdc, FACTS, Custom Power Devices
 - Interface for fuel cells, photovoltaic, micro-turbine, some wind
 - SMES, battery energy storage, flywheels
 - Adjustable speed drives
 - Active filters
 - Static transfer switches, solid state breakers
Types of Studies

- Predict response of converter controls
 - System conditions
 - Some stability studies
 - Protection studies
 - Harmonic studies
 - Response to sags
 - Transients from converter operation
Converter Modeling

- Averaged/fundamental component models
- State space models
- Switching models
 » equivalent
 » detailed
Ideal Switch
Device Models

• Turn on at next time step after command
• Turn off at next time step after command or
• At time step after next current zero crossing for diodes and thyristor
• Switch time equal to simulation time step
• When device is off = open circuit
• When device is on = short circuit
<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequencies of interest much slower than switch turn-on and turn-off times</td>
</tr>
<tr>
<td>Combining series/parallel combinations of devices into one equivalent switch</td>
</tr>
<tr>
<td>Converter losses aren’t important</td>
</tr>
<tr>
<td>Device voltage and current stresses aren’t important</td>
</tr>
</tbody>
</table>
Detailed Device Models

- Will vary with device in question
- Appropriate degree of detail varies
 - Application
 - Software, including available libraries
- Represent actual turn-on, turn-off delay
- On state resistance or voltage drop
- Gate driver circuit dynamics
Applications Requiring Detailed Device Models

- Converter voltage/current stresses
- Converter switching and conduction losses
- High switching frequency/slow devices
- Insulation transients in converter-fed machines and transformers
- Electromagnetic interference studies
- Thermal analysis
- Design of device protection
Common Devices

- In General Use:
 - Power Diode (pn junction and Shottky barrier)
 - Thyristor/Silicon Controlled Rectifier (SCR), Converter grade
 - Gate Turn Off Thyristor (GTO)
 - Insulated Gate Bipolar Transistor (IGBT)
Common Devices

- Emerging Devices (some in applications)
 - MOS Controller Thyristor (MCT)
 - Gate Commutated Thyristor (GCT/IGCT)
 - MOS Turn-off Thyristor (MTO)
 - Static Induction Transistor/Thyristor (SIT/SiTh)
 - Smart Power Devices/Power ICs
Model Implementations: Ideal Switch

- EMTP-like program built-in models
 - Controller switch
 - Diode/Thyristor
 - can force commutate also
 - Meant to model mercury arc valve
 - Does have setting for minimum turn-on voltage
 - Controlled ideal switch
 - open/close at next time step
Creating Approximate Model

- Point by point non-linearity inserted in circuit to represent turn-on characteristic
- Controlled current or voltage source in place of switch
- Difficult to make general purpose switch this way (often fixed V or I limits)
- Non-linear element or source based on characteristic or equations
Gathering Data for Model

- How much information on the application is available
 - Are you expected to treat it as a black box?
 - Control data available?
 - If the answers to these are no, you have limited options
Diode Model: Gathering Data

- Forward drop
 - Nominal from data sheet
 - Varies with current & Temp

Major Ratings and Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>80EPF..</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F(AV)}$ Sinusoidal waveform</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>V_{RRM}</td>
<td>1000 to 1200</td>
<td>V</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>1100</td>
<td>A</td>
</tr>
<tr>
<td>V_F @ 40 A, $T_J=25^\circ C$</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>T_J</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

![Graph showing forward voltage drop characteristics](image)

Fig. 7 - Forward Voltage Drop Characteristics

H. Hess and B.K. Johnson

Jan. 29, 2001
Diode Model: Gathering Data

- **Reverse recovery**
 - Nominal data given in data sheet
 - I_{rr} varies as $I_F^{1/2}$ and $(\text{di}_r/\text{dt})^{1/2}$
 - t_{rr} varies as $I_F^{1/2}$ and $(\text{di}_r/\text{dt})^{-1/2}$
 - Snap factor: $S = t_b/t_a$

Recovery Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>80EPF.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{rr}</td>
<td>480</td>
<td>ns</td>
<td>$I_F \geq 80A_{pk}$</td>
</tr>
<tr>
<td>I_{rr}</td>
<td>7.1</td>
<td>A</td>
<td>$25A/\mu s$</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>2.1</td>
<td>μC</td>
<td>$25^\circ C$</td>
</tr>
<tr>
<td>S</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H. Hess and B.K. Johnson

Jan. 29, 2001
Approximate Characteristic

- Can use straight line approximation
- Calculate losses and peak inverse voltage
- Formula on data sheets (ex: International Rectifier Sheets)
Diode Model Calculations

- Inverse voltage
 - Overshoots V_R by lead inductance
 - $(2.5\text{nH/mm}) \times I_{rr}/t_b$

- Current
 - Calculated from Circuit topology

- Losses
 - Conduction: $P_{\text{lossC}} = V_F \times I_F \times t_{\text{on}}/T$
 - Reverse recovery:
 - $P_{\text{lossS}} = f_{\text{sw}} \times [V_F \times Q_a + (5V_{rr} - 2V_R) \times Q_b/3)]$
Assuming Data?

• Use specs for known device in approximate class (converter ratings)
 » Speed: recovery time or rise/fall times
 » Forward voltage
 » Peak current

• Relative importance
 » Speed in each case
 » V_F for active devices; I_F for diodes
IGBT Model: Gathering Data

- Forward voltage drop
 - Nominal from data sheet
 - Varies with current and temperature
 - Protection methods often use as an overcurrent indicator

- Current rise / fall times
 - Nominal from data sheet
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qg</td>
<td></td>
<td>160</td>
<td>250</td>
<td>nC</td>
<td>IC = 24A</td>
</tr>
<tr>
<td>Qge</td>
<td></td>
<td>27</td>
<td>40</td>
<td></td>
<td>VCC = 400V, VBE = 15V</td>
</tr>
<tr>
<td>Qgc</td>
<td></td>
<td>53</td>
<td>80</td>
<td></td>
<td>See Fig. 8</td>
</tr>
<tr>
<td>td(on)</td>
<td></td>
<td>47</td>
<td></td>
<td>ns</td>
<td>TJ = 25°C</td>
</tr>
<tr>
<td>tr</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td>IC = 24A, VCC = 800V</td>
</tr>
<tr>
<td>td(off)</td>
<td></td>
<td>110</td>
<td>170</td>
<td></td>
<td>VGE = 15V, RG = 5.0Ω</td>
</tr>
<tr>
<td>tf</td>
<td></td>
<td>180</td>
<td>260</td>
<td></td>
<td>Energy losses include "tail" and diode reverse recovery.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Fig. 9, 10, 18</td>
</tr>
<tr>
<td>L_E</td>
<td></td>
<td>13</td>
<td></td>
<td>nH</td>
<td>Measured 5mm from package</td>
</tr>
<tr>
<td>Ciss</td>
<td></td>
<td>3600</td>
<td></td>
<td>pF</td>
<td>VGE = 0V</td>
</tr>
<tr>
<td>Coes</td>
<td></td>
<td>160</td>
<td></td>
<td></td>
<td>VCC = 30V, f = 1.0MHz</td>
</tr>
<tr>
<td>Crss</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td>See Fig. 7</td>
</tr>
<tr>
<td>trr</td>
<td></td>
<td>90</td>
<td>135</td>
<td>ns</td>
<td>TJ = 25°C, TJ = 125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>164</td>
<td>245</td>
<td></td>
<td>See Fig.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IF = 16A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VR = 200V</td>
</tr>
<tr>
<td>dI(peak)/dt</td>
<td></td>
<td>120</td>
<td></td>
<td>A/µs</td>
<td>TJ = 25°C, TJ = 125°C</td>
</tr>
<tr>
<td>During t_b</td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td>See Fig.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dl/dt = 200A/µs</td>
</tr>
</tbody>
</table>

www.irf.com
IGBT Model: Gathering Data

- Voltage rise/fall times
 - Assumed brief compared to current rise/fall times
- Current
 - Peak device current is load peak current plus diode reverse recovery current
IGBT Model: Gathering Data

- Gate delay
 - Depends on R_{gate}, C_{gs}
 - $C_{gs} = C_{\text{ies}}$ on data sheets

- Switching losses
 - Given on data sheet
 - Assumed proportional to V_S and Switching frequency
IGBT Model Calculations

• Voltage
 » Blocking: Link voltage V_S
 » Conducting: Forward voltage V_F
 » Rise transient influenced strongly by antiparallel diodes (bridge type circuit)

• Current
 » Conducting: Circuit calculations with source V_{FWD}
 » Rise and fall transients at given rise/fall times
IGBT Model Calculations

• Losses
 » Conduction: \(P_{\text{lossC}} = V_{\text{FWD}} \cdot I_C \cdot t_{\text{on}} / T \)
 » Switching: \(P_{\text{lossS}} = V_S \cdot (I_L \cdot t_a + Q_a + Q_b / 2) \)
More Detailed Models

- **SPICE / Saber**
 - Data available from mfgs.
 - “Plug and play” black box models
 - Accurate predictions

- **Developing Your Own**
 - Simplify the rest of the circuit
 - Obtain V, I transients and loss estimates
Switching Model
Simplifications

- Ideal device or simple forward source model
 » Enables prediction of behavior over many cycles
 » Calculate peak device stresses
 » Calculate losses and apply to thermal model
 » Economize on simulation time
- More detailed (SPICE/Saber) models for accurate switching transients
Creating Approximate Model

- Use controlled switch for diode to allow current reversal (need to control turn-off)
- Switch in series with voltage source for on-state voltage drop (or resistor for some devices)
- Create slope for turn-on/turn-off delay with passive circuit elements (L, C, R)
Conclusions

• Ideal switch models usually adequate
• Data for devices in specific converter may be hard to get
• Can approximate by assuming
 » Kind of device
 » Voltage, current, speed class
 » Use data for similar devices
Conclusions

- Best data available from device specification sheets
- Very detailed device models in Saber
- Some models available for Pspice
- Approximate device models often adequate

 » Know your application and needs
 » Is the rest of the model accurate enough now