H1.1) For the following circuit, \(v_1(t) = 120 \cos(\omega t + 0^\circ) \), \(v_2(t) = 120 \sin(\omega t + 60^\circ) \) and \(Z_{12} = 0.5 + j0.5 \Omega \).

a) Convert \(v_1(t) \) and \(v_2(t) \) to their phasor equivalents \(V_1 \) and \(V_2 \). According to the "sign convention" used to label the current and sources, classify the two sources as "active" or "passive."

b) Calculate \(I_{12} \).

c) Calculate the complex power \(S \) consumed by source 2.

d) Calculate the complex power \(S \) produced by source 1.

e) In terms of generator or load, what are sources 1 & 2? Was the correct guess made in labeling current direction?

f) What is the power factor of source 2?
EE 380 - HMWK H1.1

a) $V_1(t) = 120 \cos (\omega t + 60^\circ)$ \iff $\bar{V}_1 = 84.85 \angle 0^\circ \ V$

$V_2(t) = 120 \sin (\omega t + 60^\circ)$ \iff $\bar{V}_2 = 84.85 \angle -30^\circ \ V$

V_1 is active, V_2 is passive

b) $\bar{I}_{12} = \frac{\bar{V}_1 - \bar{V}_2}{0.5 + j0.5} = \frac{62.11 \angle 30^\circ \ A}{0.5 + j0.5}$

c) $\bar{S}_{2,IN} = \bar{V}_2 \bar{I}_{12}^* = (84.85 \angle -30^\circ) (62.11 \angle 30^\circ)^*$

$= 5270 \angle -60^\circ \ VA$

$= 2635 - j4564$

\[\begin{array}{c}
\text{P} \\
\text{Q}
\end{array} \]

\[\begin{array}{c}
-60^\circ \\
\theta
\end{array} \]

\[s \\
\]

\[\]

d) $\bar{S}_{1,OUT} = \bar{V}_1 \bar{I}_{12}^* = (84.85 \angle 0^\circ) (62.11 \angle -30^\circ)$

$= 5270 \angle -30^\circ$

$= 4563 - j2635$

e) V_1 = GEN ? \ . \ Guessed \ right \ on \ labeling.$

$V_2 = LOAD$

f) PF is defined in terms of passively labeled circuit element. For V_2, in part c), $\Theta = -60^\circ$

$\Rightarrow PF = 0.5 \ \text{LEAD}$

Note: $\bar{S}_1 - \bar{S}_2 = 1928 + j1928 \ VA$

$= \bar{S} \ \text{consumed by } Z_{12}$