Topics for Today:

• Announcements
 • E-mail forum soon available. Use it!
 • Web page: http://www.ece.mtu.edu/faculty/bamork/ee5200/
 • Bring calculator to lectures, for in-class sample calculations.
 • Buy a 3-ring binder for course materials.
 • Office hrs: M,W,F 2-3pm Eastern Time
 • Office: EERC 614. Phone: 906.487.2857
 • Ch.1 Solutions posted on web page, finish review soonest.
 • Set of exercises CKTS posted, due Mon Sept 24th 9am ET.
 • Ch.2 material - aggressively review it, Ch.2 solutions posted.

• Coverage for Review:
 • Chapter 1 problems (solutions posted)
 • Click on Pre-Req Mat’ls - Euler’s Identity, EE3120 Review
 • Matlab quickstart tutorial, will be using Matlab starting Week 3.
 • Plan on initiating a survey to get a handle on your skill levels.
Prerequisite Material, Useful References (see course web page)

- Euler's Identity - The foundation of phasor analysis, as well as hyperbolic functions (used for long transmission lines)
- Basic Circuit Analysis, Thevenizing, Phasor Analysis, Impedance, P,Q,S, etc.: EE3120 pre-req practice problems | Solutions
- Basic 3-Phase Phasor Analysis - Review problem from EE3120
- Magnetic Circuits - quick review and introduction of how a transformer works
- Mutual Inductance - concept handout from EE3120 (refer to Section 2.2 of your text)
- Transformers 101 - Everything you wanted (or suddenly need to know) about transformers but were afraid to ask...
- Delta-Wye Transformer - detailed example with solution from EE3120
- EE 4221 Pre-Req Course Description
- EE 4222 Pre-Req Course Description
- Pre-Req Review Videos with Notes (from 2003 Archives)
 - Basic Circuit Analysis, Phasors, Three Phase Phasors: Lect 1 (skip first 12 mins) | Lect 1 Notes
 - Phasor Diagrams, Ideal Transformers, Nodal Analysis: Lect 2 (skip first 6:20) | Lect 2 Notes
 - Nodal Analysis, 3-phase circuits, Deltas and Wyes, Per Unit System: Lect 3 (skip first 3 mins) | Lect 3 Notes
 - Active & Passive Sign Convention for power flow, Per Unit, Transformers, Symmetrical Components: Lect 4 (skip first 2 mins) | Lect 4 Notes
 - Transformers, Induced Voltage & Polarity Marks, Phase Shift: Lect 5 (skip 3:45 - 5:20) | Lect 5 Notes
 - Phase Shift in Transformers, Phasor Diagrams, Application of Symmetrical Components: Lect 6 (skip first 3 mins) | Lect 6 Notes
 - Sample .m files from above tutorials: | for_ex.m | r2p.m | for_if_ex.m | while_ex.m | ft.m |
- Symmetrical Components - the basics.
Transformers -

Gen

\[P_{\text{loss}} \propto i^2 R_{\text{line}} \]

\[Z_c = \frac{300 \Omega}{2} \]

\[\frac{n^2}{1} = \frac{50}{300} = \frac{1}{6} \]

\[n^2 = \frac{1}{6} \Rightarrow n = \frac{1}{\sqrt{6}} \]
Non-Ideal

- Flux Leakage
- Winding Resistance
- Magnetic Saturation
- Core Losses < Eddy Currents
- Hysteresis
Laminations
\[P_E = \frac{1}{t^2} \]

\[4\pi \times 10^{-7} \]

\[\mu = \mu_r \mu_0 \]

\[R = \frac{1}{\mu A c} \]
Lenz's Law

- Induced voltage causes a current, if coil is shorted, that produces a flux which cancels the $\frac{d\phi}{dt}$ that induced the voltage in first place.
\[e_{\text{ind}} = N \frac{d\phi}{dt} = -\frac{di_2}{dt} \]

Faraday

Lenz
Mutual Inductance

\[\frac{\frac{1}{L_2}}{\frac{1}{L_2} = \frac{1}{L_1} = \frac{1}{N_1}} \]

Self Inductance

\[L_2 = N_2 \phi \]

Mutual Inductance

\[\frac{\frac{1}{L_2}}{\frac{1}{L_2} = \frac{1}{L_1} = \frac{1}{N_1 \phi}} \]

Fundamental definition of inductance: \(L = \frac{\frac{1}{\phi}}{\frac{1}{N}} \)

- Section 4.4 in text, pp. 73-77.

Inductance MUTUAL
How to Use the Concept of Mutual Inductance

Two-Port Device:

\[
\begin{bmatrix}
 i_1 \\
 i_2 \\
\end{bmatrix} = \begin{bmatrix}
 L_{11} & L_{12} \\
 L_{21} & L_{22} \\
\end{bmatrix} \begin{bmatrix}
 \frac{di_1}{dt} \\
 \frac{di_2}{dt} \\
\end{bmatrix} + \begin{bmatrix}
 V_1 \\
 V_2 \\
\end{bmatrix}
\]

Note: Reference direction of currents is into terminals at (+) side of voltage.

In time domain:

\[
\begin{bmatrix}
 V_1 \\
 V_2 \\
\end{bmatrix} = \begin{bmatrix}
 L_{11} & L_{12} \\
 L_{21} & L_{22} \\
\end{bmatrix} \begin{bmatrix}
 \frac{di_1}{dt} \\
 \frac{di_2}{dt} \\
\end{bmatrix}
\]

In phasor domain:

\[
\begin{bmatrix}
 V_1 \\
 V_2 \\
\end{bmatrix} = \begin{bmatrix}
 j\omega L_{11} & j\omega L_{12} \\
 j\omega L_{21} & j\omega L_{22} \\
\end{bmatrix} \begin{bmatrix}
 \tilde{I}_1 \\
 \tilde{I}_2 \\
\end{bmatrix}
\]

Also of note:

In some texts, since \(L_{12} \) and \(L_{21} \) are mutual inductances, they are called \(M_{12} \) and \(M_{21} \). Same thing.
Shell-form

Core form
Next: Ampere's Law
Next: **Ampere's Law**

\[NI = \Phi R \]

Electrical / **Magnetic**

MMF
Ampere's Law

\[NI = \Phi R \]

\[\mathbf{H} = \frac{I_{\text{encl}}}{2\pi r} \]

\[I_{\text{encl}} = \int \mathbf{H} \cdot d\mathbf{l} \]

I\text{Enclosed}

Clamp-on ammeter or current probe.