Topics for Today:

- Announcements
 - Learning Center hrs: 4:05-4:55pm W,F; + Saturday ___
 - Office: EERC 614. Phone: 906.487.2857
 - Recommended problems from Ch.3, solutions posted
 - SYNCH homework due Oct 3th, 9am.
 - Next: Transmission Line Parameters, Chapters 4,5,6

Transformers - wrapup on off-nominal turns ratio
Synchronous Machines - Chapter 3.
 - Basic internal structure of machines, cylindrical vs. salient
 - Field windings
 - Calculation with Xd and Xq.
 - Calculation Example(s)
 - Concepts behind SYNCH exercise set.
 - S-S behavior - Xd ; Dynamic behavior - Xd’
 - Short-circuit behavior - Xd”; s-s, transient, subtransient
\[Z = \frac{\tilde{V}}{\tilde{I}} \]

\[\tilde{V}_1 + \tilde{V}_2 = 0 \]

\[\pi_1 = \pi_2 \]

\[\tilde{V}_1 \tilde{I}_1^* = \tilde{V}_2 \tilde{I}_2^* \]

\[\tilde{I}_1^* = \frac{\tilde{V}_1}{\tilde{V}_2} = \frac{1}{\pi} \]

\[\tilde{I}_2^* = \frac{\tilde{V}_2}{\tilde{I}_1} = \pi \]
Detailed derivations!

Basis Approach: Develop π-Equiv and handle just like T-Line.

One-Line: \[\frac{a}{l} \]

per-unit per-phase \[\frac{a}{l} \]

Top-Changers
- LTC's
- Phase-Shift

Nominal
\[\frac{a}{l} \]

\[\pm \text{ Adjustment in phase angle (PS) or volt mag (LTC)} \]
XFMRs - Use \(L-N (\phi_{A-N}) \) Per Phase Eguiv.

5 \(\rightarrow \) 6

\(\text{EP.u.} \)

\[y_{56} = -\frac{1}{266} \]

(And \(y_{65} \))

\[y_{55} = y_{55} + 255 \]

\[y_{66} = y_{66} + " \]

REF

Modify

\[y_{55} \]

\[y_{56} \]

\[y_{65} \]

\[y_{66} \]

Basis 2-winding

XFMR is simple.

In \([\chi \text{bus}]\)

How about?

- LTC (or TCUL)
- Phase Shifter (PS)
Tap Changing XFMRs - Variations (p.u. representations)

"From" Bus

1. \(y_{sc} \) \(y_{sc} \) \(c:1 \)
2. \(R+jX \) \(y_{sc} \) \(c:1 \)
3. \(y_{sc} \) \(c:1 \)
4. \(1/c \) \(y_{sc} \)

"To" Bus

\[
y_{sc} = \frac{1}{R+jX}
\]

"C" is off-nominal turns ratio. In general, C is complex.

- C is real for LTC.
- C is complex for PS.

If \(|c| \neq 1\) then magnitude change.

If C is complex, phase shift.

Instructor: Bruce Mork Phone (906) 487-2857 Email: bamork@mtu.edu
Standard Approach:

\[
\begin{bmatrix}
 y_{11} & y_{12} \\
 y_{21} & y_{22}
\end{bmatrix}
\begin{bmatrix}
 V_1 \\
 V_2
\end{bmatrix}
= \begin{bmatrix}
 I_1 \\
 I_2
\end{bmatrix}
\]

Goal:

\[
y_{11} = y_{SER} + y_{SH1} \\
y_{12} = y_{SER} \\
y_{21} = y_{SER} \\
y_{22} = y_{SER} + y_{SH2}
\]
TAP-CHANGERS
On One-Line Diags:

Conceptually:

In per unit, nominal transformation "disappears"
Generically, we can describe this as a 2-node \([Y]\) as a 2-node \([Y]\) where

\[
\begin{bmatrix}
 y_{12} \\
 y_{21} \\
 y_{22}
\end{bmatrix}
= \begin{bmatrix}
 0 & 2 \\
 1 & 0 \\
 0 & 2
\end{bmatrix}
\]

\[
\begin{bmatrix}
 y_{11} \\
 y_{21} \\
 y_{22}
\end{bmatrix}
= \begin{bmatrix}
 0 & -1 \\
 1 & 0 \\
 0 & -1
\end{bmatrix}
\]

\[\text{REF} = \begin{bmatrix}
 0 & 2 \\
 1 & 0 \\
 0 & 2
\end{bmatrix}\]
Strategically using shorts, we can isolate on the values of \([Y]\).

\[
y_{11} = \frac{\bar{I}_1}{\bar{V}_1} \bigg|_{\bar{V}_2 = 0}
\]

\[
y_{22} = -\frac{\bar{I}_2}{\bar{V}_2} \bigg|_{\bar{V}_1 = 0}
\]

\[
y_{22} = -\frac{\bar{I}_2}{\bar{V}_2} \bigg|_{\bar{V}_1 = 0}
\]

\[
y_{22} = -\frac{\bar{I}_2}{\bar{V}_2} \bigg|_{\bar{V}_1 = 0}
\]

\[
\frac{1}{Z_{\text{EQ}}/|C_1|^2} = |C_1|^2 Y_{\text{EQ}}
\]
\[\tilde{I}_1 = -\frac{C \tilde{V}_2}{2E_a}; \quad \tilde{I}_2 = -\tilde{I}_1 \times C^* = -\left[\frac{C \tilde{V}_2}{2E_a} \right] C^* \]

Note: \[\frac{\tilde{I}_2}{\tilde{I}_1} = C^* \]

\[= \frac{1C^2 \tilde{V}_2}{2E_a} \]
$\frac{d}{V} = -\frac{cV_2}{Z_{\text{eq}}} = -c_T'\text{eq}$

$\frac{V_2}{V} = \frac{c''}{V_{\text{eq}}}$

$y_{12} = \frac{-V_2}{V}$

$y_{21} = \frac{-I_2}{V}$

Note: Ideal XFR, by definition, has c'' is voltage ratio.

$S^{\text{in}} = V, I^{\text{in}} = V_2, I^{\text{out}} = 5, V^{\text{out}}$
If we "reverse engineer" our $[Y]$ into an equivalent 2-bus network, then
Observations:
- LTC (Teul) has a c that is Real.

\[C_{Yeq} = C^* \cdot Y_{eq} \]
\[C_{Yeq} \uparrow \text{ Bilateral}, \quad (y_{12} = y_{21}) \]

- Phase-Shifter (PS) has complex c.

\[C_{Yeq} \neq C^* \cdot Y_{eq} \]
\[y_{12} \neq y_{21} \]

- Transfer admittances

\[\mathbf{Y} \text{ not symm.} \]
\[\text{about main diag.} \]
\[\text{Not Bilateral.} \]
Typical Spacings and Clearances in a Substation

See up-to-date NESC to verify!

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>Min Conductor Spacing</th>
<th>Min Switch Spacing Ph-Ph</th>
<th>Min L-L Phase Clearance</th>
<th>Min No. Bells at Deadend</th>
<th>Min Cable Size</th>
<th>Min Bus Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>KV (L-L)</td>
<td>BIL (kV)</td>
<td>Cent-Cent</td>
<td>Ph-Gnd</td>
<td>To Grade</td>
<td>Horngap</td>
<td>V Break</td>
</tr>
<tr>
<td>7.5</td>
<td>95</td>
<td>1'-6"</td>
<td>7½"</td>
<td>8'</td>
<td>3'</td>
<td>18"</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>2'</td>
<td>10"</td>
<td>9'</td>
<td>3'</td>
<td>2'</td>
</tr>
<tr>
<td>23</td>
<td>150</td>
<td>2'-6"</td>
<td>12"</td>
<td>10'</td>
<td>4'</td>
<td>2'-6"</td>
</tr>
<tr>
<td>34.5</td>
<td>200</td>
<td>3'</td>
<td>15"</td>
<td>10'</td>
<td>5'</td>
<td>3'</td>
</tr>
<tr>
<td>46</td>
<td>250</td>
<td>4'</td>
<td>1'-6"</td>
<td>10'</td>
<td>6'</td>
<td>4'</td>
</tr>
<tr>
<td>69</td>
<td>350</td>
<td>5'</td>
<td>2'-5"</td>
<td>11'</td>
<td>7'</td>
<td>5'</td>
</tr>
<tr>
<td>115</td>
<td>550</td>
<td>7'</td>
<td>3'-7½"</td>
<td>12'</td>
<td>10'</td>
<td>7'</td>
</tr>
<tr>
<td>138</td>
<td>650</td>
<td>8'</td>
<td>4'-1"</td>
<td>13'</td>
<td>12'</td>
<td>8'</td>
</tr>
<tr>
<td>161</td>
<td>750</td>
<td>9'</td>
<td>4'-10"</td>
<td>14'</td>
<td>14'</td>
<td>9'</td>
</tr>
<tr>
<td>230</td>
<td>900</td>
<td>11'</td>
<td>6'-½"</td>
<td>15'</td>
<td>16'</td>
<td>11'</td>
</tr>
<tr>
<td>230</td>
<td>1050</td>
<td>13'</td>
<td>7'-3"</td>
<td>16'</td>
<td>18'</td>
<td>13'</td>
</tr>
<tr>
<td>345</td>
<td>1300</td>
<td>15'</td>
<td>8'-5½"</td>
<td>18'</td>
<td>20'</td>
<td>15'</td>
</tr>
<tr>
<td>500</td>
<td>1800</td>
<td>25'</td>
<td>12"</td>
<td>---</td>
<td>---</td>
<td>25'</td>
</tr>
<tr>
<td>765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[i(t) = \frac{V_{\text{max}}}{12i} \sin \left(\frac{ut + x - \theta}{2} \right) \]

\[V(t) = V_{\text{max}} \sin \left(ut + x - \theta \right) \]

\[\frac{12i}{v} = \frac{1}{2} \frac{R_{\text{eq}}}{R} \]

\[\theta = \tan^{-1} \left(\frac{v}{l} \right) \]
Input:

1. \(x, R = \bar{Z}_{sc} \)
2. \(V = \text{prefault voltage} \)
3. \(L = \text{Span Length} \)
4. \(d = \text{Spacing} \)

Data Structure:

2. t, \(\bar{u} \), \(\bar{\delta} \), B, Find

\[\text{Find} = i (L \times B) \]

3. CODING
4. Plotting