Topics for Today:

- **Announcements**
 - Expanded Term Project outline (i.e. Table of Contents + List of references (suggest about half a dozen to start with) by end of week.
 - Software: ATP/ATPDraw - print out quick start, online license application.
 - Office hrs: 2:05-2:55pm M,W,F
 - Office: EERC 614. Phone: 906.487.2857
 - Problems & all solutions: Ch.6 solns are posted.

- **Chapter 6 - Using the T-Line models**
 - Short Transmission Lines - up to 50 miles (80 km)
 - Voltage Regulation, phasor diagrams
 - Per-phase impedance diagrams (positive seq only)
 - Medium-Length Lines (50 - 150 miles)
 - ABCD parameters for Medium-lines, power flow (L18).
 - Long Lines - more than 150 miles (240 km)
 - Derivation of long-line equations, meaning of equations
 - Characteristic Impedance Z_c
 - Propagation Constant $\gamma = \alpha + j\beta$
Reactive Compensation

- Add a series cap

- Shunt Compensation

- First, review key concepts
 - Power Flow Limits
 - Ferranti Rise -
Power Flow thru T-Line

...if we neglect the effects of R, C

\[e = j X_L \quad \tilde{V}_e = \tilde{V}_o \]

Power transferred:

\[P = \frac{1}{2} |\tilde{V}_s||\tilde{V}_o| \sin (\angle \tilde{V}_s - \angle \tilde{V}_o) \]

\[P_{\text{max}} = \frac{V_s V_o}{X_L} \]

Use same equation for P_{out} of a synch machine:

\[P_{\text{out}} = \frac{V_g V_T}{X_s} \sin \delta \]

\[V_g \xrightarrow{\text{JE} \ 180^\circ} \quad j X_s + V_T 10^\circ \]
$P_{\text{MAX}} = \frac{V_s V_r}{(X_L - X_C)}$

Compensation Factor: $\frac{X_C}{X_L}$

Series Compensation

$\frac{1}{j\omega C} = -jX_c$

$X_C = X_L$

then 100% comp.

$P_{\text{MAX}} = \infty$

(neglecting R, Shunt C)

Typically $0.2 \rightarrow 0.7$

Problem: Subsynchronous Resonance
Ex: 30% compensation

\[\frac{X_c}{X_L} = 0.3 \]

\[P_{\text{MAX}} = \frac{V_S V_R}{X_L} \]

\[P_{\text{MAX (COMP)}} = \frac{V_S V_R}{0.7 X_L} \]

\[\Rightarrow 1.43 P_{\text{MAX}} \]

70% comp

\[\Rightarrow P_{\text{MAX (COMP)}} = \frac{V_S V_R}{0.3} \]

\[\Rightarrow 3.33 P_{\text{MAX}} \]

But....
\[f_r = \frac{1}{2\pi f L} \]

\[X_C = 2\pi f C \]

\[f_r = 33.33 \text{ Hz} \]

\[f_r = 500 \text{ Hz} \]

For 30% comp
70% comp
Nat. Freq, if mechanically excited

i.e. if some mech. natural freq. matches an electrical natural freq., then we will "excite" this resonance.

First well-documented case:

- Salt River Project

- Careful:
 - Long HV compensated line
 - Lots of local gen
 - Lots of remote load
Ferranti Rise

Closed

\[V_{out} = V_{in} \frac{-jX_c}{j(X_c - X_L)} \]

\[X_c \gg X_L = \text{some value} \]

\[V_{out} = -jX_c \]

\[V_{in} = \text{some positive value} \]

\[V_{in} \rightarrow V_{out} \]
Shunt Compensation:

\[I_{\text{shunt}} = I_{\text{line}} \times \frac{1}{G} \]

Connect Shunt Reactor at receiving end.

\[V \]

Limit to

\[< 1.10 \text{ p.u.} \]

Compensates for Ferranti rise.

- Can also use Shunt Reactor (inductor) to hold \(V_r \) down during lightly-loaded cases.
- Too heavily loaded, low voltage
 - add cap in shunt.
Shunt Compensation

100 mi Bluebird
Deg = 20 ft.
Xc = 1665Ω
Xs = 120Ω (typ)

Line Chg:
\[Y_{cap} = jB_c \]
\[Z_{cap} = -jX_c \]

\[V_R = V_s \frac{-j1665}{j120 - j1665} \]
\[= 1.08 V_s \]
Shunt Comp Factor = \frac{B_L}{B_c} = \frac{\%L}{\omega C_{ch4}}

Total Compensation:
Add a reactor \(B_L = B_c \)

Total Shunt Admittance = 0

\[\frac{B_L}{B_c} = 1 \]

then

\[Y_{total} = jB_c - jB_L = 0 \]

\(Z_{shunt} = \infty \)
\[P_{1 \rightarrow 2} = \frac{V_1 V_2}{X_L} \sin (\alpha - \beta) \]

\[V_1, V_2 : \min: \frac{(95)(.95)}{1.05 \times 1.05} = .8185 \quad \Rightarrow \quad 22.17\% \text{ increase!} \]
IN General,

Short Line
\[\leq 50 \text{mi} (80 \text{km}) \]

Ex. 6.1

\[V_s^+ - \sqrt{3} + \sqrt{R} \]

Ex. 6.3

\[V_s^+ - \sqrt{3} + \sqrt{R} \]

Neutral

\[R + jX \]

Rec.
Voltage Regulation:

\[VR = \left| \frac{\bar{V}_{R, NL}}{\bar{V}_{R, FL}} \right| - \left| \bar{V}_{R, FL} \right| \]

\[\bar{V}_S = \bar{V}_{RES} + \bar{V}_L + \bar{V}_R = \bar{I}_{LOAD} R + \bar{I}_{LOAD} jX + \bar{V}_R \]
\[V_R = \frac{V_{null} - V \ell c}{V_{null} - V_R} \]

Diagrams:
- Lead circuit diagram
- Cavity P.F. diagram
- Voltage relationships diagram
VR in terms of A-B-C-D.

Recall: \(VR = \frac{VR_{NL} - VR_{FL}}{VR_{FL}} = \frac{V_s/A - VR_{FL}}{VR_{FL}} \)