Topics for Today:

- Announcements
 - Your Term Project is a PROJECT (not a summary paper), so be sure there is some application/implementation of the concepts and theory.
 - Software: online students - apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 - ASPEN software - run off of MTU server via internet, see e-mail instructions.
 - Office: EERC 614. Phone: 906.487.2857
 - Recommended problems & all solutions: Ch.9, 13 solns now posted.

- Chapter 9 - Load Flow wrapup
 - Implementation of Loadflow for Slack, Gen, and Load Bus
 - Input/translation/conversion of system data.
 - Aspen (PSS/E).
 - Corrective Actions for low or high bus voltage —
 - Line Loading concerns —
 - Contingencies —
 - System Security - Operation, Protection, Cyber-security
- Bus Types, Data (Also: Loads, and Shunt Devices)
- Lines
- Transformers
- Generators

- Slack/Swing/ V-S bus

\[\sum P_{\text{area}} = 0 \]
\[\sum Q_{\text{area}} = 0 \]

\(P, Q \) are "Slack" variables

or: [V-dependent P, Q]

"Scheduled" P, Q
Gen Bus (P-V Bus)

Solve for \(Q \) & \(S \) solved

\[2Q_{min} = 0 \]

\[P, Q \]

"Slack Variable"

\[|\tilde{V}| \text{ is fixed.} \]

If \(Q_{min} \) or \(Q_{max} \) are exceeded, change to PQ
P-Q or Load Buses: Solve for \sqrt{V} and S

Scheduled P, Q

Grid Flows $[Y]$

VLS

Solve for bus voltage.

$\frac{Q}{V} = V^2 \cdot Bc$

$\alpha V: .95^2 \rightarrow 1.05^2$

$.9025 \rightarrow 1.102$
Voltage Collapse
"Possible"
"Voc" Depressed

Line
I_{Line}

Slack
P_{Slack}

\frac{\partial L}{\partial V^*}

\frac{\partial L}{\partial V'}
Figure 6.2 shows a single-line diagram of a five-bus power system. Input data are given in Tables 6.1, 6.2, and 6.3. As shown in Table 6.1, bus 1, to which a generator is connected, is the swing bus. Bus 3, to which a generator and a load are connected, is a voltage-controlled bus. Buses 2, 4, and 5 are load buses. Note that the loads at buses 2 and 3 are inductive since $Q_2 = -Q_{L2} = -0.7$ and $-Q_{L3} = -0.1$ are negative.

For each bus k, determine which of the variables V_k, δ_k, P_k, and Q_k are input data and which are unknowns. Also, compute the elements of the second row of Y_{bus}.

Careful: GIGO

Figure 6.2

Single-line diagram for Example 6.9

- **B1**: 400 MVA, 15 kV
- **B51**: 400 MVA, 15/345 kV
- **B52**:
- **B53**:
- **B41**: 345 kV, 50 mi
- **B42**: 345 kV, 200 mi
- **B21**: 345 kV, 100 mi
- **B22**: 345 kV, 50 mi
- **T1**: 800 MVA, 345/15 kV
- **T2**: 800 MVA, 345/15 kV
- **Line 1**: 800 MVA, 15 kV
- **Line 2**: 800 MVA, 15 kV
- **Line 3**: 800 MVA, 15 kV
- **Bus 1**: Slack
- **Bus 2**: PQ
- **Bus 3**: PV
- **Bus 4**: PQ
- **Bus 5**: PQ

Assumed constant P_{Q_k}, i.e., don't change w/ bus voltage.
The input data and unknowns are listed in Table 6.4. For bus 1, the swing bus, P_1 and Q_1 are unknowns. For bus 3, a voltage-controlled bus, Q_3 and δ_3 are unknowns. For buses 2, 4, and 5, load buses, V_2, V_4, V_5 and δ_2, δ_4, δ_5 are unknowns.
Transformers

*Zero unless LTC or PS, tap ratio ≠ 1.

Add effect into \([Y]\).
right click to enter params.

Alt - PrtScr → active window
Ctrl - PrtScr → whole screen
- Convergence Criteria:
 - Max iterations: []
 - MW Tolerance: 0.05
 - MVAR Tolerance: 0.05

- Auto Adjustment Threshold:
 - MW: 20
 - MVAR: 20

- System slack bus: Slack 20 kV 0

- Misc. Options:
 - Start from last volt. solution
 - Solution Monitor
 - Start with LTC taps at nominal

- Enforce:
 - Generator VAR limits
 - Transformer taps
 - Area interchange
 - Gen remote volt control
 - Switched shunts
 - Phase shifters

- Solution Method:
 - Newton-Raphson
 - Fast Decoupled

- Buttons:
 - OK
 - Cancel
 - Help

- Handwritten notes:
 - Full Jacobian
 - Main-diag submatrices of Jacobian
 - }=
 - ?
Total generation = 6507.9 MW
Losses = 67.9 MW