Topics for Today:

• Announcements
 • Your Term Project is a PROJECT (not a summary paper), so be sure there is some application/implementation of the concepts and theory.
 • Software: online students - apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 • ASPEN software - run off of MTU server via internet, see e-mail instructions.
 • Office: EERC 614. Phone: 906.487.2857
 • Recommended problems & all solutions: Ch.9, 13 solns now posted.

• Chapter 9 - Load Flow wrapup
 • Implementation of Loadflow for Slack, Gen, and Load Bus
 • Input/translation/conversion of system data.
 • Aspen
 • Corrective Actions for low or high bus voltage
 • Line Loading concerns
 • Contingencies
 • System Security - Operation, Protection, Cyber-security
- Bus Types, Data (Also: Loads, and Shunt Devices)
- Lines
- Transformers
- Generators

Slack/Swing V-S bus

P, Q

\[\Sigma P_{\text{area}} = 0 \]
\[\Sigma Q_{\text{area}} = 0 \]

\(P, Q \) are "Slack" variables
Gen Bus (P-V Bus)

Solve for Q_1 & S_1

$2Q_{in} = 0$

Grid Input

$|V| \text{ is fixed.}$

If Q_{min} or Q_{max} are exceeded, change to PG
P-Q or Load Buses: Solve for \(V \) and \(S \)

Scheduled \(P, Q \) → \(V \) → \(VLS \) solve for bus voltage.

Grid Flows \([Y]\)

\[jBc = Q = V^2 Bc \]

\[\text{as} V: .95 \rightarrow 1.05 \]

\[.9025 \rightarrow 1.102 \]
Voltage Collapse
is detected.
Figure 6.2 shows a single-line diagram of a five-bus power system. Input data are given in Tables 6.1, 6.2, and 6.3. As shown in Table 6.1, bus 1, to which a generator is connected, is the swing bus. Bus 3, to which a generator and a load are connected, is a voltage-controlled bus. Buses 2, 4, and 5 are load buses. Note that the loads at buses 2 and 3 are inductive since $Q_2 = -Q_{L2} = -0.7$ and $-Q_{L3} = -0.1$ are negative.

For each bus k, determine which of the variables V_k, δ_k, P_k, and Q_k are input data and which are unknowns. Also, compute the elements of the second row of Y_{bus}.

FIGURE 6.2

Single-line diagram for Example 6.9

+ Assumed constant P,Q, i.e. don't change V bus voltage.
TABLE 6.1

Bus input data for Example 6.9*

<table>
<thead>
<tr>
<th>Bus</th>
<th>Type</th>
<th>(V) per unit</th>
<th>(\delta) degrees</th>
<th>(P_a) per unit</th>
<th>(Q_a) per unit</th>
<th>(P_l) per unit</th>
<th>(Q_l) per unit</th>
<th>(Q_{\text{min}}) per unit</th>
<th>(Q_{\text{max}}) per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swing</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>2</td>
<td>Load</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Constant</td>
<td>1.05</td>
<td>5.2</td>
<td>8.0</td>
<td>0.8</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Load</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Load</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*\(S_{\text{base}} = 100 \text{ MVA}, V_{\text{base}} = 15 \text{ kV} \) at buses 1, 3, and 345 kV at buses 2, 4, 5

TABLE 6.2

Line input data for Example 6.9

<table>
<thead>
<tr>
<th>Bus-to-Bus</th>
<th>(R') per unit</th>
<th>(X') per unit</th>
<th>(G') per unit</th>
<th>(B') per unit</th>
<th>Maximum MVA per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4</td>
<td>0.0090</td>
<td>0.100</td>
<td>0.25</td>
<td></td>
<td>12.0</td>
</tr>
<tr>
<td>2-5</td>
<td>0.0045</td>
<td>0.050</td>
<td></td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>4-5</td>
<td>0.00225</td>
<td>0.025</td>
<td></td>
<td></td>
<td>12.0</td>
</tr>
</tbody>
</table>

TABLE 6.3

Transformer input data for Example 6.9

<table>
<thead>
<tr>
<th>Bus-to-Bus</th>
<th>(R) per unit</th>
<th>(X) per unit</th>
<th>(G) per unit</th>
<th>(B_{\text{m}}) per unit</th>
<th>Maximum MVA per unit</th>
<th>Maximum TAP Setting per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>0.00150</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>0.00075</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION

The input data and unknowns are listed in Table 6.4. For bus 1, the swing bus, \(P_1 \) and \(Q_1 \) are unknowns. For bus 3, a voltage-controlled bus, \(Q_3 \) and \(\delta_3 \) are unknowns. For buses 2, 4, and 5, load buses, \(V_2 \), \(V_4 \), \(V_5 \) and \(\delta_2, \delta_4, \delta_5 \) are unknowns.
Transformers

*Zero unless LTC or PS, tap ratio #1.

\[
\begin{bmatrix}
K & x \\
L & x \\
x & x
\end{bmatrix}
\]

Add effect into \([Y]\).
Gen Var Limits

\[\begin{align*}
R' & \quad jX' \\
G' & \quad \frac{1}{j\beta'}
\end{align*} \]
right click to enter params.

Alt- PrtScr ➔ active window
Ctl - PrtScr ➔ whole screen
Paste into document.
Bus Data

Name:
Bus no.: 0
Location: North
Area no.: 1
Zone no.: 1
Bus Type: Real bus
Zone Style: Vertical bar
Symbol Style: Show ID on one-line diagram
State plane coordinates: X = 0, Y = 0
Last changed Jan 01, 1986

Transmission Line Data

0 Station NN 500 kV - 0 Station S 500 kV
Name:
Ckt ID: 1
Length: 0.0
Kt:
Type:

Branch Parameters
Recompute from table
R = 0.006
X = 0.06
R0 = 0.006
X0 = 0.06

G1 = 0
B1 = 0
G2 = 0
B2 = 0
G10 = 0
B10 = 0
G20 = 0
B20 = 0

Current Ratings (A)
A: 0
B: 0
C: 0
D: 0

Metered at: Station NN 500 kV

OK Cancel Help

Last changed Jan 01, 1986
<table>
<thead>
<tr>
<th>Transformer Data</th>
<th>20 kV</th>
<th>500 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1=20</td>
<td>G2=500</td>
<td></td>
</tr>
<tr>
<td>B1=0</td>
<td>B2=0</td>
<td></td>
</tr>
<tr>
<td>G10=0</td>
<td>G20=0</td>
<td></td>
</tr>
<tr>
<td>B10=0</td>
<td>B20=0</td>
<td></td>
</tr>
</tbody>
</table>

Metered at:

<table>
<thead>
<tr>
<th>South G1 20 kV</th>
<th>South 500 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zg1=0</td>
<td>Zg2=0</td>
</tr>
<tr>
<td>Zgn=0</td>
<td></td>
</tr>
</tbody>
</table>

Last changed Jan 01, 1986
Generating Unit Info

<table>
<thead>
<tr>
<th>ID:</th>
<th>Unit rating: 100 MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impedances (pu based on unit MVA)

- Subtransient: 0.1
- Transient: 0.1
- Synchronous: 0.1
- o sequence: 0.1
- i sequence: 0.1
- x:
- x:
- x:
- x:

Neutral Impedance (in actual Ohms)

<table>
<thead>
<tr>
<th>Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

Scheduled generation (MW)

<table>
<thead>
<tr>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
</tr>
</tbody>
</table>

P and Q limits (MW and MVAR)

- P max: 8999.99, Q max: 9999.99
- P min: -8999.99, Q min: -9999.99

Diagram

The diagram shows a rectangular coordinate system with axes labeled P and Q. The axes are labeled as follows:

- Q max: upper right corner
- Q min: lower right corner
- P max: upper left corner
- P min: lower left corner

The diagram illustrates the boundary lines for maximum and minimum values of P and Q.
- Full Jacobian
- Main-diag submatrices of Jacobian.