Topics for Today:

- Announcements
 - Software: online students - apply for ATP/ATPDRAW license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 - Office hrs: 2-3pm M,W,F
 - Office: EERC 614. Phone: 906.487.2857
 - Book exercises from Ch.6,7 solutions posted

Chapter 6 - Shunt Capacitance Transmission Lines

- Using the T-Line models
 - Short Transmission Lines - up to 50 miles (80 km)
 - Voltage Regulation, phasor diagrams
 - Per-phase impedance diagrams (positive seq only)
 - Medium-Length Lines (50 - 150 miles)
 - ABCD parameters for Medium-lines, power flow
 - Long Lines - more than 150 miles (240 km)
 - Derivation of long-line equations, meaning of equations
 - Characteristic Impedance Z_c
 - Propagation Constant $\gamma = \alpha + j\beta$
 - Surge-Impedance Loading (SIL)
 - Wavelength, velocity, Traveling waves, reflections
EE 5200 - Term Projects

Time: Finals Week Wednesday 12:45-2:45pm
Room: EERC B45

Allotted Time: ~20 minutes per presentation; 4 mins between.

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Team Members</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grimm</td>
<td>Mutual inductance of lines, fault calcs</td>
</tr>
<tr>
<td></td>
<td>Pelon, Shauger, Bischoff</td>
<td>UG Cable faults - fault locating</td>
</tr>
<tr>
<td></td>
<td>Stenvig</td>
<td>Wide Area Control - Dynamic Vars via SVC</td>
</tr>
<tr>
<td></td>
<td>Krzeminski, Schoenherr</td>
<td>AGC</td>
</tr>
<tr>
<td></td>
<td>Egorova, Reynisson, Gao</td>
<td>Harmonic Load Flow</td>
</tr>
<tr>
<td></td>
<td>Sahu, Solanki</td>
<td>Off-Nominal Transformers in Loadflow</td>
</tr>
<tr>
<td></td>
<td>Heidfeld, Van Singel</td>
<td>Lightning Surge Protection of T-Lines</td>
</tr>
<tr>
<td></td>
<td>Prajapati, Ekneligoda, Guan</td>
<td>System Operation for Microgrids</td>
</tr>
<tr>
<td></td>
<td>Ramamurthy, Vasireddy</td>
<td>Transformer Inrush and System Operation</td>
</tr>
<tr>
<td></td>
<td>Kazianka</td>
<td>Load Flow?</td>
</tr>
<tr>
<td></td>
<td>Tracy</td>
<td>Unit Commitment</td>
</tr>
<tr>
<td></td>
<td>King</td>
<td>Lightning Protection on Transmission Lines</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>??</td>
</tr>
</tbody>
</table>
Generic circuit diagram and text:

- 2-Port + \(T \)-Lines
- \(Z \)-Parameters (electronics)
- \(H \)-Parameters (electronics)
- Many others.

Diagram:
- \(S \)
- \(\frac{1}{2} \)
- \(T \)
- \(R \)
- \(Z_s \)
- \(V_s \)
- Load
- \(V_L \)
- \(V_P \)
- \(P \)
TABLE A.6

ABCD constants for various networks

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Equations</th>
</tr>
</thead>
</table>
| **Series impedance** | \[A = 1 \]
| | \[B = Z \]
| | \[C = 0 \]
| | \[D = 1 \]
| | \[\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_R \\ I_R \end{bmatrix} = \begin{bmatrix} V_S \\ I_S \end{bmatrix} \]
| **Shunt admittance** | \[A = 1 \]
| | \[B = 0 \]
| | \[C = Y \]
| | \[D = 1 \]
| | \[A = 1 + YZ \]
| | \[B = Z \]
| | \[C = Y \]
| | \[D = 1 + YZ \]
| **Unsymmetrical T** | \[A = 1 + Z \]
| | \[B = 1 \]
| | \[C = Y \]
| | \[D = 0 \]
| | \[A = 1 + YZ \]
| | \[B = Z \]
| | \[C = Y \]
| | \[D = 1 + YZ \]
| **Unsymmetrical π** | \[A = 1 \]
| | \[B = 1 \]
| | \[C = Y \]
| | \[D = 1 \]
| | \[A = 1 + YZ \]
| | \[B = Z \]
| | \[C = Y \]
| | \[D = 1 + YZ \]
| **Networks in cascade** | \[A = A_1A_2 + B_1C_1 \]
| | \[B = A_2B_1 + B_1D_1 \]
| | \[C = A_1C_1 + C_1D_1 \]
| | \[D = B_1C_1 + D_1D_1 \]
| | \[A = (A_1B_1 + A_2B_1)/(B_1 + B_1) \]
| | \[B = B_1B_1/(B_1 + B_1) \]
| | \[C = C_1 + C_1 + (A_1 - A_2)(D_1 - D_1)/(B_1 + B_1) \]
| | \[D = (B_1D_1 + B_1D_1)/(B_1 + B_1) \]
| **Networks in parallel** | \[A = A_1I_1 + A_2I_1 \]
| | \[B = B_1I_1 + B_1I_1 \]
| | \[C = C_1 + C_1 + (A_1 - A_2)(D_1 - D_1)/(B_1 + B_1) \]
| | \[D = (B_1D_1 + B_1D_1)/(B_1 + B_1) \]
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
V_s \\
I_s
\end{bmatrix}
= \begin{bmatrix}
V_r \\
I_r
\end{bmatrix}
\]

A = \frac{V_r}{I_s} (W/o. Load) \\
B = \frac{I_r}{I_s} (v.o. (O.C. Receiving end)) \\
C = \frac{V_r}{I_s} (s.c.) \\
D = \frac{I_r}{I_s} (s.c.)
Voltage Regulation

\[VR = \frac{V_{NL} - V_{FL}}{V_{FL}} \]

Most loads are Lagging \(PF \Rightarrow V_{NL} > V_{FL} \)
\(VR > 0 \).

If load is leading \(PF \Rightarrow V_{NL} < V_{FL} \Rightarrow VR < 0 \).
\[\bar{V}_s = \bar{I}_L (R+jX) + \bar{V}_R = \frac{V_{NL}}{V_{FL}} \]

Assume \(\bar{V}_R = 1 \text{ p.u.} \), then \(\bar{V}_s = \frac{V_{NL}}{V_{FL}} \)

\(\bar{V}_R \) is neg if \(V_s < V_R \).

(\(V_{NL} < V_{FL} \))
VOLTAGE PROFILE

\[V_s \rightarrow \frac{1}{2}Y \rightarrow \frac{1}{2}Z \rightarrow \text{LOAD} \]

\[x = l \quad x = 0 \]

Ferranti Rise
Open Receiving

"FLAT" LINE: \[Z_L = Z_C \]
Full Load, LAG
S.C. LOAD
FERRANTI RISE

\[\frac{X}{R} \approx 20 \text{ at } 345 \text{ kV} \]

\[\bar{V}_s + I_{cha} jX - jXc - I_{cha} \bar{V}_s \]

\[\bar{V}_s = I_{cha} \]

\[V_{CAP} = \bar{V}_s - I_{cha} jX \]

\[0^\circ - (180^\circ) \]

hence the "negative voltage drop"

\[\bar{V}_s - I_{cha} jXs \]