Topics for Today:

- Announcements
 - Matlab - now we are ready to begin using it.
 - Office hrs: 2:05-2:55pm M,W,F
 - Office: EERC 614. Phone: 906.487.2857
 - Recommended problems from Ch.3, solutions posted
 - Next: Transmission Line Parameters, Chapters 4,5,6

Synchronous Machines - Chapter 3.
- Basic internal structure of machines, cylindrical vs. salient
- Field windings
- Calculation with Xd and Xq.
- Calculation Example(s)
- Concepts behind SYNCH exercise set.
- S-S behavior - Xd; Dynamic behavior - Xd'
- Short-circuit behavior - Xd"; s-s, transient, subtransient
$$V_{in} = V(I_{21})$$

$$P_{out} + C_{out}$$

$$V_{in} = V_{out} = V_{I_{21}}$$

$$I_{21} = V_{I_{21}}$$

Passive \(\Phi = V_{in} - V_{out} \)

Cons = Q_{in} = P_{in} + I_{21}

\[\Theta = \sqrt{V_{in} - I_{21}} \]
Single-Phase

PF

LEAD

UNITY

LAG

\[\frac{1}{\frac{1}{R} + \frac{1}{C}} \]

\[\frac{1}{R} = \frac{v}{I} \]
\(P_{out} = \frac{E_a V_T}{X_s} \sin \delta_e \)
\(Q_{out} = \frac{E_a V_T}{X_s} \cos \delta_e - \frac{V_T^2}{X_s} \)

Typically: \(V_T \) ref 10°

\(E_a = E_{af} \ begin{array}{l} L \ end{array} \)

\(E_a, \ E_f, \ E_{af} \)

\(N \) \quad \text{they equiv of grid}

\(PF = \) ?
\[P_{\text{out}} = \frac{E_{\text{VTR}} \sin \delta}{X_s} \]

\[Q_{\text{out}} = \frac{E_{\text{VTR}} \cos \delta - \frac{V_f^2}{X_s}}{X_s} \]

\[S_{\text{out}} = V I^* \]
\[= P_{\text{out}} + j Q_{\text{out}} \]
\[= S_{\text{into system}} \]
\[S_m = B_r - L B_s \]

\[P_{1 \rightarrow 2} = \frac{V_1 V_2}{X} \sin (\delta - \beta) \]
Salient vs. Non-Salient

- Salient: (rotor w/pole projections)
 - Hydro = slower speed
 - more poles
- Non-Salient: (round rotor)
 - Steam turbine, high speed
 - 2 or 4 pole

\[P = \frac{EV \Delta T \sin \delta}{X_s} \]

electrical degrees

\[S_e = S_m \frac{N_p}{2} \]

Torque Angle
mech.
\[S_m = \frac{16\pi - 2\pi}{\text{mech degrees}} \]
$\frac{EaVr \sin S}{Xs}$ (rounded)
\[P_{out} = \frac{E_a V_r}{X_d} \sin \delta + \frac{V_r^2}{2} \left(\frac{X_d - X_q}{X_d X_q} \right) \sin 2\delta \]

Cylindrical Rotor

\[P = \frac{E_a V_r}{X_f} \sin \delta \]

\[Q = \frac{E_a V_r}{X_s} \cos \delta \]

Eqn. (3.58)

Squirrel Rotor
KVL: \[\vec{E}_o = \vec{I}_a (jX + R_a) + \vec{V}_T \]

\[\Theta = \frac{\Delta \vec{V}}{\Delta \vec{I}} \]
\[\Phi = L_{\text{in}} - L_{\text{out}} \]

Cylindrical Rotor
KVL: $E_a = V_T + I_d j X_d + I_q j X_q + \overrightarrow{I_a R_A}$

Salient Rotor
To: ee5200-l@mtu.edu
From: Bruce Mork <bamork@mtu.edu>
Subject: d-q synch machine steady-state loading calcs

First of all, notation-wise, the internal induced voltage of the synch machine is called E_a in some references (voltage induced on armature windings) and in other references it’s called E_f (since induced voltage on armature is due to magnitude of field current according to open-circuit characteristic of machine).

In answer to question posed:

Yes, I_q by definition is exactly in phase with E_a. Referring to Fig. B-5 in Appendix B reference,

1) determine I_a according to load specified, usually assuming $V_t = 1.0$ pu at 0°.
2,3) calculate $E_{a'}$ to find torque angle delta (this is based observation that since $jX_{dl}I_1$ is parallel to E_a, then $V_t + I_aR_a + jX_{ql}I_a$ lands you somewhere along the phasor E_a and this allows you to determine delta.
4) knowing delta, resolve I_a into its 2 components $I_a = I_d + I_q$
5) then finally, $E_a = V_t + I_aR_a + jX_{dl}I_d + jX_{ql}I_q$

As a double-check, E_a must end up with the same angle (delta) that you calculated for $E_{a'}$. So, the very good thing about this is that there is a double-check built into the calculations, you can immediately see if your answer seems to be correct, i.e. if $E_{a'}$ and E_a have different angles, then you messed up somewhere along the line...

Dr. Mork