Topics for Today:

- Announcements
 - Matlab - now we are ready to begin using it.
 - Office hrs: 2:05-2:55pm M,W,F
 - Office: EERC 614. Phone: 906.487.2857
 - Recommended problems from Ch.3, solutions posted
 - Next: Transmission Line Parameters, Chapters 4,5,6

Synchronous Machines - Chapter 3.
- Basic internal structure of machines, cylindrical vs. salient
- Field windings
- Calculation with Xd and Xq.
- Calculation Example(s)
- Concepts behind SYNCH exercise set.
- S-S behavior - Xd ; Dynamic behavior - Xd’
- Short-circuit behavior - Xd”; s-s, transient, subtransient
Single-Phase

PF

LEAD

UNITY

LAG

\[\frac{1}{\frac{R}{C}} \]

\[\frac{1}{\frac{R}{L}} \]
The circuit diagram shows a power grid with sources E_a, F_f, and E_{af}. The power factor PF is to be determined.

- The equivalent network N' is given.
- Typically, V_T is referenced to 10^0.
- $E_a = E_a L_8$
- $P_{out} = \frac{E_a V_T \sin \delta_e}{X_3} \cdot \delta_e = \frac{1}{2} \frac{E_a}{X_3} - \frac{V_T^2}{X_3}$
- $Q_{out} = \frac{E_a V_T \cos \delta_e}{X_3} - \frac{V_T^2}{X_3}$
\[S_{\text{out}} = \bar{V}I^* \]
\[= P_{\text{out}} + jQ_{\text{out}} \]
\[= \bar{S}_{\text{into \ system}} \]

\[S_m = B_r - \bar{B}_s \]

\[
P = \frac{EVT \sin \delta}{X_s} \]

\[
Q = \frac{EVT \cos \delta - \frac{V^2}{X_s}}{X_s} \]

\[P_{1 \rightarrow 2} = \frac{V_1 V_2}{X} \sin(d-\beta) \]
Salient vs. Non-Salient

(rotor w/ pole projections)
- Hydro - slower speed.
- more poles.

(round rotor)
- steam turbine, high speed.
- 2 or 4 pole.

\[P = \frac{EVTS_0 \sin \delta}{X_s} \]
electrical Griffiths!

Torque Angle mech:
\[S_m = \frac{B_r - B_s}{\text{mech deg.}} \]

\[\phi = S_m \frac{Np}{2} \]
\[E_s = E_a(jX_s + R_a) + V_t \]

\[\theta = \frac{V}{V_s} \]

\[\Phi = \frac{V}{V_s} \]

Cylindrical Rotor
\[E_p = V_t + 2jx_e - 2jx + i_{RA} \]

- SALIENT ROTOR

Diagram showing voltage and current relationships.
First of all, notation-wise, the internal induced voltage of the synch machine is called \(E_a \) in some references (voltage induced on armature windings) and in other references it's called \(E_f \) (since induced voltage on armature is due to magnitude of field current according to open-circuit characteristic of machine).

In answer to question posed:

Yes, \(I_q \) by definition is exactly in phase with \(E_a \). Referring to Fig. B-5 in Appendix B reference,

1) determine \(I_a \) according to load specified, usually assuming \(V_t = 1.0 \text{ pu at 0}^\circ \).
2,3) calculate \(E_a' \) to find torque angle \(\delta \) (this is based observation that since \(jX_d I_d \) is parallel to \(E_a \), then \(V_t + I_a R_a + jX_q I_a \) lands you somewhere along the phasor \(E_a \) and this allows you to determine \(\delta \).
4) knowing \(\delta \), resolve \(I_a \) into its 2 components \(I_a = I_d + I_q \)
5) then finally, \(E_a = V_t + I_a R_a + jX_d I_d + jX_q I_q \).

As a double-check, \(E_a \) must end up with the same angle (\(\delta \)) that you calculated for \(E_a' \). So, the very good thing about this is that there is a double-check built into the calculations, you can immediately see if your answer seems to be correct, i.e. if \(E_a' \) and \(E_a \) have different angles, then you messed up somewhere along the line...

Dr. Mork