Topics for Today:

- Announcements
 - Software: online students - apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 - Office hrs: 2-3pm M,W,F
 - Office: EERC 614. Phone: 906.487.2857
 - Book exercises from Ch.6,7 solutions posted

Chapter 6 - Shunt Capacitance Transmission Lines

- Using the T-Line models
 - Short Transmission Lines - up to 50 miles (80 km)
 - Voltage Regulation, phasor diagrams, Per-phase impedance diagrams (positive seq only)
 - Medium-Length Lines (50 - 150 miles)
 - ABCD parameters for Medium-lines, power flow
 - Long Lines - more than 150 miles (240 km)
 - Compensation - shunt and series
 - Derivation of long-line equations, meaning of equations
 - Characteristic Impedance Z_c
 - Propagation Constant $\gamma = \alpha + j\beta$
 - Surge-Impedance Loading (SIL)
 - Wavelength, velocity, Traveling waves, reflections
\[V_R = V_s - I_R (R + jX) \]

- **LAG PF**
 - \((V_R \text{ pos})\)
- **UNIT PF**
 - \((V_R \text{ pos})\)
- **LEAD PF**
 - \(V_R \text{ often neg.}\)
Reactive Compensation
- All a series cap or C

Shunt Compensation
- Shunt for Ferranti Rise

First, review key concepts
- Power Flows Limits
- Ferranti Rise
Power Flow thru T-Line

Power transferred:

$$P = \frac{V_s I_l \sin \phi}{X_L}$$

$$P_{\text{max}} = \frac{V_s V_L}{X_L}$$

Use same segregation of a synch machine

$$P_{\text{out}} = \frac{V_L V_s \sin \phi}{X_S}$$
Series Compensation

\[\frac{1}{j\omega C} = -jX_C \]

\[P_{\text{MAX}} = \frac{V_s \cdot V_r}{(X_L - X_C)} \]

Compensation Factor:

\[\frac{X_C}{X_L} \]

typically 0.2 → 0.7

Problem: Subsynchronous Resonance

\[X_C = X_L \]

then 100% comp.

\[P_{\text{MAX}} = \infty \]

(neglecting \(R \), Shunt \(C \))
Ex: 30% compensation

i.e. \(\frac{X_C}{X_L} = 0.3 \)

\[
P_{\text{Max}} = \frac{V_s V_r}{X_L} \Rightarrow P_{\text{Max (comp)}} = \frac{V_s V_r}{0.7 X_L}
\]

\[
\Rightarrow 1.43 P_{\text{Max}}
\]

70% comp

\[
P_{\text{Max (comp)}} = \frac{V_s V_r}{0.3}
\]

\[
\Rightarrow 3.33 P_{\text{Max}}
\]

But....
\[f_r = \frac{1}{2\pi \sqrt{L C}} = \frac{1}{2\pi \sqrt{\frac{X_L}{X_C}}} \]

\[X_L = 2\pi f L \]
\[X_C = \frac{1}{2\pi f C} \]

For 30% comp: \[f_r = f_{synch} \sqrt{1.3} = f_0 \sqrt{\frac{X_C}{X_L}} = 53 \text{ Hz} \]

For 70% comp: \[f_r = 50 \text{ Hz} \]
Nat. Freq. if mechanically excited
i.e. if some mech. natural freq.
matches an electrical nat. freq.
then we will "excite" this
resonance.

First well-documented case:
- Salt River Project

- Careful:
 - Long HV compensated line
 - Lots of local gen
 - Lots of remote load
Ferranti Rise

Closed

\[V_{\text{out}} = V_0 \frac{-jX_c}{j(X_c - X_L)} \]

\[X_c \gg X_L = \text{Some Value} \geq 1 \]
Shunt Compensation:

\[I_{\text{shunt}} = I_{\text{line}} \]

Connect Shunt Reactor at receiving end.

Limit to \(\leq 1.10 \text{ pu} \)
Compensates for Ferranti rise.

- Can also use Shunt Reactor (inductor) to hold \(V_p \) down during lightly-loaded cases.
- Too heavily loaded, low voltage
 - add cap in shunt.
Shunt Compensation

100 mi Bluebird
Deg = 20 ft.
$X_c = 1665 \frac{S}{Z}$
$X_s = 12052$ (typ)

Line Chg:
$Y_{cp} = jB_c$
$Z_{cp} = -jX_c$

$V_R = V_s \frac{-j1665}{j120 - j1665}$
$= 1.08 V_s$
Shunt Comp Factor: \(\frac{B_L}{B_c} = \frac{\sqrt{Q_L}}{w C_{CH4}} \)

Total Compensation:
Add a reactor \(B_L = B_c \)

Total Shunt Admittance: \(0 \)

\[+jB_c \quad E - jB_L \quad \Rightarrow \quad \frac{B_L}{B_c} = 1 \]

then

\[Y_{\text{TOTAL}} = jB_c - jB_L = 0 \]

\((Z_{\text{SHUNT}} = \infty) \)
Power Transfer Capability:

\[P_{1\rightarrow 2} = \frac{V_1 V_2}{X_L} \sin (\alpha - \beta) \]

\[V_{1,2} \]

\[(95)(1.95) \]

\[(1.05)(1.05) \approx 0.8185 \Rightarrow 22.1\% \text{ increase!} \]
Shunt Caps:

- P.F. Correction (on consumer side of meter)
- Voltage Support
- Max Power Transfer (see next slide)
Voltage Regulation:

\[VR = \left| V_{R,\text{NL}} \right| - \left| V_{R,\text{FL}} \right| \]

\[\left| V_{R,\text{FL}} \right| \]

LAG

\[V_s = V_{R,\text{NL}} + V_{R,\text{FL}} + V_L \]

\[V_s = V_{\text{RES}} + V_L + V_R = I_{\text{Load}} R + I_{\text{Load}} jX + V_R \]
LEAD

\[I_{\text{load}} \quad \text{Vs} \quad V_L \quad \text{VR} \quad V_{\text{RES}} \]

\[VR = \frac{V_{\text{HL}} - V_{\text{FL}}}{V_{\text{FL}}} = \frac{V_S - V_R}{V_R} = \text{pos. no. for Lag, Unity} \]

Note: VR can be negative for leading P.F. load.
v_R in terms of $A-B-C-O$.

Recall:

\[v_R = \frac{v_R, NL - v_R, FL}{v_R, FL} \]

\[\frac{v_R}{v_R, FL} = \frac{v_s/A + v_R, FL}{v_R, FL} \]
IN General,

\[R + jX \]

\[A \quad V_{IN} \quad \text{Sent.} \quad V_1/2 \quad \text{Rec.} \quad A' \]

Neutral

\[x \quad l \]

\[\frac{\text{Short Line}}{\leq 50 \text{mi} \, (80 \text{km})} \]

\[\overbrace{\text{Ex. 6.1}}^{\text{Fig. 6.3}} \]
\[\frac{x}{R} \text{ ratio determines effectiveness of } k \]

\[\tilde{V}_s \]

\[Z_{bus} = \begin{bmatrix} \cdots \end{bmatrix} \]

\[\tilde{I}_c \]

\[\tilde{V}_s \]

\[\tilde{I}_c^R \]

If \(\frac{x}{R} = 0 \), \(\tilde{I}_c \rightarrow \tilde{V}_s \rightarrow \tilde{I}_c^R \)