Topics for Today:

- Announcements
 - Software: online students - apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 - ASPEN software - run off of MTU server via internet, see e-mail instructions.
 - Office: EERC 614. Phone: 906.487.2857
 - Recommended problems & all solutions: Ch.13 solns now posted.

Ongoing topics...
- Chapter 13 - Power system operation, AGC, economic dispatch
 - Constrained optimization methods - LaGrange multipliers
 - Optimal Dispatch, Generator Scheduling
 - Economics
 - Other constraints - environmental, contractual, availability
 - System load characteristics
 - Application to lossless system
 - System including losses - use $[B]$ loss coefficient matrix
Loadflow

- "Flat" Start vs. "hot" Start

Key: Must give initial values to V_2, S.

Slack Bus: V is fixed; $S = 0$.

PV Bus: V is ""; $S = ?$

PV Bus: $V = ?$; $S = ?$

At PV Bus: $S = 0^\circ$. (Flat start)

p_a "" $V = 1.0 \text{ p.u.}$

p_a "" $S = 0^\circ$"
Hot Start: Use \(S \) & \(V \) values from a similar converged case.

Is convergence guaranteed?
No! Nonlinear system of eqns. NR uses first-order (i.e. LINEAR) approximation at each iteration to move toward the soln.
Risk: - May converge to 1 local soln
- May blow up F. P. overthrew
- Not global soln.
ASPEN Tutorial

Intro to Software Capabilities
 • Loadflow
 • Short circuit, arc flash
 • Relay application, coordination

Basics of setting up a loadflow
 • Get the system data, parameters
 • Basics of program
 • Draw system configuration
 • Parameters
 • Buses
 • Lines
 • Transformers
 • Generators
 • Loadflow configuration
 • Output
 • Remedial actions