Topics for Today:

• Announcements
 • Matlab - due latest 9am Monday..
 • Office hrs: 4:05-4:55pm M,W; 10-11am Friday
 • Office: EERC 614. Phone: 906.487.2857
 • Recommended problems from Ch.3, solutions posted
 • Next: Transmission Line Parameters, Chapters 4,5,6

Transformers - wrapup on off-nominal turns ratio
Synchronous Machines - Chapter 3.
 • Basic internal structure of machines, cylindrical vs. salient
 • Field windings
 • Calculation with Xd and Xq.
 • Calculation Example(s)
 • Concepts behind SYNCH exercise set.
 • S-S behavior - Xd ; Dynamic behavior - Xd’
 • Short-circuit behavior - Xd”; s-s, transient, subtransient
\[Y = \frac{1}{R + jX} \]

\[
\begin{bmatrix}
\bar{y}_{nn} & \bar{y}_{n2} \\
\bar{y}_{2n} & \bar{y}_{22}
\end{bmatrix}
\begin{bmatrix}
\bar{I}_1 \\
\bar{I}_2
\end{bmatrix} =
\begin{bmatrix}
\bar{I}_1' \\
\bar{I}_2'
\end{bmatrix}
\]
\[Z = \frac{V_1}{I_1} \]

\[V_1 = V_2 I_2 \]

\[I_2 = \frac{V_1}{V_2} = \bar{c} \]

\[I_1 = \bar{V}_1 \]

\[I_2 = \frac{\bar{I}_2^*}{\bar{I}_1^*} = \bar{c} \]
Detailed derivations:

Basis Approach:

Develop \(\pi \)-Equiv and handle just like T-Line.

One-Line:

\[
\begin{array}{c}
1 \\
\frac{a}{1} \\
\frac{2}{3}
\end{array}
\]

per-unit

per-phase

Top-Changers

- LTC's
- Phase-Shift

\[
\begin{array}{c}
0 \\
\frac{a}{1} \\
\frac{c}{1}
\end{array}
\]

NOMINAL

\[\text{Turns Ratio} \]

\[\pm \text{Adjustment in phase angle (PS)} \]

or volt mag (LTC)

References

MichiganTech Instructor: Bruce Mork Phone (906) 487-2957 Email: bamork@mtu.edu
XFMRS - Use L-N (ΦA-N)
Per Phase Equiv.

Modify
Y55 Y56
Y65 Y66

REF

In [Ybus]

\[y_{56} = \frac{1}{y_{66}} \]
(And \(y_{65} \))

\[y_{55} = y_{55} + 25 \]
\[y_{66} = y_{66} + " \]

Basis 2-winding
XFMR is simple.

How about?
- LTC (or TCUL)
- Phase Shifter (PS)
Tap Changing XFMRs - Variations (p.u. representations)

"From" Bus

1. \[\frac{1}{\frac{1}{C} + jX} \]
2. \[\frac{1}{\frac{1}{C} + jX} \]
3. \[\frac{1}{\frac{1}{C} + jX} \]
4. \[\frac{1}{\frac{1}{C} + jX} \]

"To" Bus

\[yse \]

\[C \]

"C" is off-nominal turns ratio. In general, \(C \) is complex.

- \(C \) is real for LTC.
- \(C \) is complex for PS.

If \(|C| \neq 1 \) then magnitude change.

If \(C \) is complex, phase shift.

Instructor: Bruce Mork Phone (906) 487-2857 Email: bamork@mtu.edu
Standard Approach:

\[\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \]

Goal: 1 \[\rightarrow ? \rightarrow 2\]

\[y_{11} = y_{SER} + y_{SH1} \]
\[y_{12} = y_{SER} \]
\[y_{21} = y_{SER} \]
\[y_{22} = y_{SER} + y_{SH2} \]
TAP-CHANGERS

On One-Line Diags:

Conceptually:

Nominal Voltage Ratio

↑ off-nominal turns ratio due to Tap Changer

In per unit, nominal transformation "disappears"
Generically, we can describe this as a 2-node \([Y]\).

\[
\begin{bmatrix}
-I_1 \\
V_1 \\
V_2
\end{bmatrix}
\begin{bmatrix}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
=
\begin{bmatrix}
I_1 \\
-I_2
\end{bmatrix}
\]

where
Strategically using shorts, we can isolate on the values of $[Y]$.

\[y_{11} = \frac{I_1}{v_1} \bigg| \bar{v}_2 = 0 \]

\[= \frac{1}{Z_{EQ}} = Y_{EQ} = \frac{1}{R_{EQ} + jX_{EQ}} \]

\[y_{22} = -\frac{I_2}{v_2} \bigg| \bar{v}_1 = 0 \]

\[= \frac{1}{Z_{EQ}/1C_1^2} = |C_1^2 Y_{EQ}| \]
\[\frac{E^2}{\frac{1}{2}c^2} = 1/c^2 \]

\[I = \frac{E^2}{\frac{1}{2}c^2} \]

Note: \(I^2 = c^* I \times c^* = -\frac{E^2}{\frac{1}{2}c^2} \times -c^* = \frac{E^2}{\frac{1}{2}c^2} \times c^* \)
\[y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0} = -\frac{C V_2 / Z_{EQ}}{V_2} = -C Y_{EQ} \]

\[y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0} = -\frac{C*I_1}{V_1} = -C Y_{EQ} \]

Note: Ideal XFMR, by definition, has "C" is voltage ratio.
\[C = \frac{V_1}{V_{out}} \quad C = \frac{V_{2*}}{I_{1*}} \quad C = \frac{V_{1*}}{I_{2*}} \]
If we "reverse engineer" our \([Y]\) into an equivalent 2-bus network, then

\[
\begin{align*}
\bar{V}_1 & \rightarrow C Y_{EQ} \rightarrow \bar{I}_1 \\
\bar{V}_2 & \leftarrow C^* Y_{EQ} \leftarrow \bar{I}_2 \\
Y_{EQ} (1-C) & \rightarrow \bar{V}_1 \\
Y_{EQ} (1-C^2-C^*) & \rightarrow \bar{V}_2
\end{align*}
\]
Observations:

- LTC (TCUL) has a c that is Real.
 :: Transfer Admittances
 \[C_Y \text{eq} = C \cdot Y \text{eq} \]
 \[\Rightarrow \text{Bilateral.} \quad (y_{12} = y_{21}) \]

- Phase-Shifted (PS) has complex c.
 :: Transfer admittances
 \[C_Y \text{eq} \neq C \cdot Y \text{eq} \]
 \[y_{12} \neq y_{21} \]
 \[\text{Not \ Bilateral.} \quad \left[Y \right] \text{ not symm. (about main diag.)} \]
- S.C. Calc
- Induced Force

\[
\begin{array}{c|c|c}
R & L & \text{feasible range} \\
\hline
0.25 - 0.5 & 12.47 \text{ KV} \\
1.0 & 69 \text{ KV} \\
\end{array}
\]

X/R ratio: \[
\begin{array}{c|c|c}
5.0 & 345 - 500 \text{ KV} \\
\end{array}
\]

\[
|Z_{\text{se}}| = |R + jXL| : \frac{5\%}{5\%}, \frac{10\%}{10\%} \text{ on 100 MVA Base}
\]
Typical Spacings and Clearances in a Substation

See up-to-date NESC to verify!

<table>
<thead>
<tr>
<th>Voltage Level (KV)</th>
<th>Min Conductor Spacing</th>
<th>Min Switch Spacing Ph-Ph</th>
<th>Min L-L Phase Clearance</th>
<th>Min No. Bells at Deadend</th>
<th>Min Cable Size</th>
<th>Min Bus Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>1'-6"</td>
<td>7½"</td>
<td>8'</td>
<td>18"</td>
<td>2'-6"</td>
<td>7"</td>
</tr>
<tr>
<td>15</td>
<td>2'</td>
<td>10"</td>
<td>9'</td>
<td>3'</td>
<td>2'</td>
<td>2'-6"</td>
</tr>
<tr>
<td>23</td>
<td>2'-6"</td>
<td>12"</td>
<td>10'</td>
<td>4'</td>
<td>2'-6"</td>
<td>3'</td>
</tr>
<tr>
<td>34.5</td>
<td>3'</td>
<td>15"</td>
<td>10'</td>
<td>5'</td>
<td>3'</td>
<td>4'</td>
</tr>
<tr>
<td>46</td>
<td>4'</td>
<td>1'-6"</td>
<td>10'</td>
<td>6'</td>
<td>4'</td>
<td>5'</td>
</tr>
<tr>
<td>69</td>
<td>5'</td>
<td>2'-5"</td>
<td>11'</td>
<td>7'</td>
<td>5'</td>
<td>6'</td>
</tr>
<tr>
<td>115</td>
<td>7'</td>
<td>3'-7½"</td>
<td>12'</td>
<td>10'</td>
<td>7'</td>
<td>9'</td>
</tr>
<tr>
<td>138</td>
<td>8'</td>
<td>4'-1"</td>
<td>13'</td>
<td>12'</td>
<td>8'</td>
<td>11'</td>
</tr>
<tr>
<td>161</td>
<td>9'</td>
<td>4'-10"</td>
<td>14'</td>
<td>14'</td>
<td>9'</td>
<td>13'</td>
</tr>
<tr>
<td>230</td>
<td>11'</td>
<td>6'-1½"</td>
<td>15'</td>
<td>16'</td>
<td>11'</td>
<td>16'</td>
</tr>
<tr>
<td>230</td>
<td>13'</td>
<td>7'-3"</td>
<td>16'</td>
<td>18'</td>
<td>13'</td>
<td>18'</td>
</tr>
<tr>
<td>345</td>
<td>15'</td>
<td>8'-5½"</td>
<td>18'</td>
<td>20'</td>
<td>15'</td>
<td>---</td>
</tr>
<tr>
<td>500</td>
<td>25'</td>
<td>12"</td>
<td>---</td>
<td>---</td>
<td>25'</td>
<td>---</td>
</tr>
<tr>
<td>765</td>
<td>25'</td>
<td>12"</td>
<td>---</td>
<td>---</td>
<td>25'</td>
<td>---</td>
</tr>
</tbody>
</table>
Eqn. 10.2

\[i(t) = \frac{V_{\text{max}}}{12L} \left[5 \sin(\omega t + \phi - \theta) - \frac{R}{L^2} t \sin(\phi - \theta) \right] \]

\[|Z| = \sqrt{\frac{R^2}{L^2} + (\omega L)^2} \]

\[\Theta = \tan^{-1} \left(\frac{\omega L}{R} \right) \]
Input:
1. $X, R = Z_{sc}$
2. V: prefault voltage
3. L: Span Length
4. d: Spacing

Data Structure:
1. t
2. v
3. i
4. B
5. Find

Find = $i(L \times B)$

Steps:
3. CODING
4. Plotting