Topics for Today:

• Announcements
 • Software: online students - apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 • Office hrs: 2-3pm M,W,F
 • Office: EERC 614. Phone: 906.487.2857
 • Book exercises from Ch.6,7 solutions posted

Chapter 6 - Shunt Capacitance Transmission Lines

• Using the T-Line models
 • Short Transmission Lines - up to 50 miles (80 km)
 • Voltage Regulation, phasor diagrams
 • Per-phase impedance diagrams (positive seq only)
 • Medium-Length Lines (50 - 150 miles)
 • ABCD parameters for Medium-lines, power flow
 • Long Lines - more than 150 miles (240 km)
 • Derivation of long-line equations, meaning of equations
 • Characteristic Impedance Z_C
 • Propagation Constant $\gamma = \alpha + j\beta$
 • Surge-Impedance Loading (SIL)
 • Wavelength, velocity, Traveling waves, reflections
\[S = V_i^* I_i^* \]

\[Q = V_i^2 \frac{B_{dc}}{2} \]

\[\tilde{I} = \frac{\tilde{V}_3 - \tilde{V}_1}{R + jX_L} = I/I_m \]

\[\Delta P = 4.66 \quad \Delta Q = 8.79 \]

\[1 \rightarrow 3 \quad -174.88 \quad -40.45 \]

\[3 \rightarrow 1 \quad 179.54 \quad 49.24 \]
\[Q = V_1^2 B_c \]
\[I_{12} = \frac{V_1 - V_2}{R + jX} \]
\[S_1' = S_1 + V_1^2 B_c \]
\[S_2' = S_1' - P_R - Q_x \]
\[= S_1' - (I_{12})_R^2 - (I_{12})_X^2 \]
Generic 2-Port Network

ABCD Parameters (T-Lines)
H Parameters (Electronics)
Many others
TABLE A.5
ABCD constants for various networks

Series impedance

\[I_s \quad I_r \]
\[V_s \quad V_r \]
\[A = 1 \]
\[B = 0 \]
\[C = Y \]
\[D = 1 \]

Shunt admittance

\[I_s \quad I_r \]
\[V_s \quad Y \]
\[A = 1 + YZ_1 \]
\[B = Z_1 + Z_2 + YZ_2 Z_3 \]
\[C = Y \]
\[D = 1 + YZ_1 \]

Unsymmetrical T

\[I_s \quad I_r \]
\[V_s \quad Y_1 \]
\[A = 1 + YZ \]
\[B = Z \]
\[C = Y_1 + Y_2 + ZY_1 Y_2 \]
\[D = 1 + YZ \]

Unsymmetrical π

\[I_s \quad I_r \]
\[V_s \quad A_1 B_1 C_1 D_1 \]
\[A_2 B_2 C_2 D_2 \]
\[V_r \]
\[A = A_1 A_4 + B_2 C_2 \]
\[B = A_1 B_4 + B_4 D_4 \]
\[C = A_2 C_1 + C_2 D_1 \]
\[D = B_2 C_1 + D_2 D_4 \]

Networks in cascade

\[I_s \quad I_r \]
\[V_s \quad A_1 B_1 C_1 D_1 \]
\[A_2 B_2 C_2 D_2 \]
\[V_r \]
\[A = (A_1 B_4 + A_4 B_1)/(B_1 + B_4) \]
\[B = B_2 B_4/(B_1 + B_4) \]
\[C = C_1 + C_4 + (A_1 - A_4)(D_2 - D_1)/(B_1 + B_4) \]
\[D = (B_2 D_1 + B_4 D_4)/(B_1 + B_4) \]

Networks in parallel

\[I_s \quad I_r \]
\[V_s \quad A_1 B_1 C_1 D_1 \]
\[A_2 B_2 C_2 D_2 \]
\[V_r \]
\[A = (A_1 B_4 + A_4 B_1)/(B_1 + B_4) \]
\[B = B_2 B_4/(B_1 + B_4) \]
\[C = C_1 + C_4 + (A_1 - A_4)(D_2 - D_1)/(B_1 + B_4) \]
\[D = (B_2 D_1 + B_4 D_4)/(B_1 + B_4) \]
Voltage Regulation

\[V_{drop} = \pi j \omega L \rightarrow V_R \]

\[V_{load} = \frac{V_{NL} - V_{FL}}{V_{FL}} \]

Most loads are lagging PF \(\Rightarrow V_{NL} > V_{FL} \)

IF load is leading PF \(\Rightarrow V_{NL} < V_{FL} \Rightarrow VR < 0 \.)
\[\vec{V}_s = \vec{I}_R (R + jX) + \vec{V}_R = \frac{V_{NL}}{2} \]

Assume \[\vec{V}_R = 1.1 \text{ p.u.} \]

\[= V_{FL} \]

VR is neg if \(V_s < V_R \).

\((V_{NL} < V_{FL}) \)
\[\vec{V}_s = \vec{V}_R + \vec{I}_R jX_L \]

\[\vec{V}_R = \vec{V}_s + \vec{I}_R jX_L \]