Topics for Today:

• Announcements
 • Software: online students - apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 • Office hrs: 2-3pm M,W,F
 • Office: EERC 614. Phone: 906.487.2857
 • Book exercises from Ch.6,7 solutions posted

Chapter 6 - Shunt Capacitance Transmission Lines

• Using the T-Line models
 • Short Transmission Lines - up to 50 miles (80 km)
 • Voltage Regulation, phasor diagrams, Per-phase impedance diagrams (positive seq only)
 • Medium-Length Lines (50 - 150 miles)
 • ABCD parameters for Medium-lines, power flow
 • Long Lines - more than 150 miles (240 km)
 • Compensation - shunt and series
 • Derivation of long-line equations, meaning of equations
 • Characteristic Impedance Z_C
 • Propagation Constant $\gamma = \alpha + j\beta$
 • Surge-Impedance Loading (SIL)
 • Wavelength, velocity, Traveling waves, reflections
LAG PF \[
(VR \text{ pos})
\]
UNITY PF \[
(VR \text{ pos})
\]
LEAD PF \[
VR \text{ often neg.}
\]

\[
\vec{V}_R = \vec{V}_S - \vec{I}_R (R + jX)
\]

\[
\begin{align*}
\vec{V}_R &\quad \vec{V}_S \\
\vec{I}_R &\quad \vec{I}_{jX}
\end{align*}
\]

\[
\begin{align*}
\vec{V}_R &\quad \vec{V}_S \\
\vec{I}_R &\quad \vec{I}_{jX}
\end{align*}
\]

\[
\begin{align*}
\vec{V}_R &\quad \vec{V}_S \\
\vec{I}_R &\quad \vec{I}_{jX}
\end{align*}
\]
Reactive Compensation
- Add a series cap

- Shunt Compensation

- First, review key concepts
 - Power Flow Limits
 - Ferranti Rise
Power Flow thru T-Line

...if we neglect the effects of R, C

\[V_s \quad jX_L \quad R \quad V_t \]

Power transferred:

\[P = \frac{\vert V_s \vert \vert V_t \vert}{X_L} \sin \left(\frac{(\vec{V}_s - \vec{V}_t)}{S} \right) \]

\[P_{\text{max}} = \frac{V_s \sqrt{R}}{X_L} \]

Use same equation for P_{out} of a synch machine:

\[P_{\text{out}} = \frac{V_s V_t}{X_s} \sin \delta \]

\[V_s/\angle 0 \quad jX_s + V_t/\angle 10^\circ \]
Problem: Synchronous Resonance

Compensation Factor: \(0.2 \to 0.7\)

Series Compensation

\[P_{\text{MAX}} = \frac{V_s V_a}{(X_L - X_c)} \]

\[X_c = \frac{X_L}{X_c} \]

\[X_{L\text{=XL}} \]

\[X_{L\text{=Xc}} \]

\[P_{\text{MAX}} = 100\% \text{ comp.} \]

\[p = (\text{neglecting } R, \text{ Shunt}) \]
Ex: 30% compensation

\[
\frac{X_c}{X_L} = 0.3
\]

\[
P_{MAX_I} = \frac{V_s V_r}{X_L}
\]

\[
P_{MAX_{(COMP)}} = \frac{V_s V_r}{0.7 X_L}
\]

\[
\Rightarrow P_{MAX_{(COMP)}} = 1.43 P_{MAX_I}
\]

70% comp

\[
P_{MAX_{(COMP)}} = \frac{V_s V_r}{0.3}
\]

\[
\Rightarrow 3.33 P_{MAX_I}
\]

But....
\[- \frac{3L}{X_c} \]

\[2\pi \sqrt{L \cdot C} = \frac{3L}{X_c} \]

\[f_c = \frac{1}{2\pi \sqrt{L \cdot C}} \]

\[X_C = \frac{1}{2\pi fC} \]

\[f = f_{\text{sync}} \cdot \sqrt{1.3} = f_0 \sqrt{1.3} \]

\[f_r = \frac{33 \text{ Hz}}{50 \text{ Hz}} \]

for 30% comp

\[f_r = \frac{2 \pi fL}{\frac{C}{X_c}} \]

for 70% comp

\[f_r = \frac{2 \pi fC}{\frac{L}{X_c}} \]
Nat. Freq, if mechanically excited
i.e. if some mech natural freq.
matches an electrical nat'1 freq.
then we will "excite" this resonance.

First well-documented case:
- Salt River Project

- Careful:
 - Long HV compensated line
 - Lots of local gen
 - Lots of remote load

Hydro is less swept.
Ferranti Rise

\[V_{\text{out}} = V_0 \frac{-jX_c}{j(X_L - X_c)} \]

\(X_c \gg X_L = \text{some value} > 1 \).
Shunt Compensation:

\[I_{\text{shunt}} = I_{\text{line}} \]

Connect Shunt Reactor at receiving end.

Limit to \(< 1.10 \text{ pm} - \text{Compensates for Ferranti rise.}\)

- Can also use Shunt Reactor (inductor) to hold \(V_E \) down during lightly-loaded cases.
- Too heavily loaded, low voltage
 - add cap in shunt.
Shunt Compensation

jXs

100 mi Bluebird

Dgy = 20 ft.
Xc = 166.5 ohms
Xs = 12052 (HP)

Ycap = jBc
Zcap = -jXc

VR = Vs - jXs

\[V_R = \frac{\sqrt{3} \cdot V_S}{j180 - j1665} \]

\[S = \frac{j1665}{j180} \]

Vs
Shunt Comp Factor = \(\frac{B_L}{B_c} = \frac{\sqrt{V_L}}{\omega C_{CH6}} \)

Total Compensation:
Add a reactor \(B_L = B_c \)

Total Shunt Admittance = 0

\[Y_{TOTAL} = jB_c - jB_L = 0 \]

(\(\conformal{Z_{shunt}} = \infty \))
\[P_{1 \Rightarrow 2} = \frac{V_1 V_2}{X_L} \sin(\alpha - \beta) \]

Power Transfer Capability.

\[V_{1,2} \]

\[V_1, V_2 : \min : \frac{(95)(95)}{} \]

\[: \max : (1.05)(1.05) \]

\[\Rightarrow 22.1\% \quad \text{increase!} \]
SHUNT CAPS:

- P.F. Correction (on consumer side of meter)
- Voltage Support
- Max Power Transfer (see next slide)
Voltage Regulation:

\[V_R = \frac{|V_{R,NL}| - |V_{R,FL}|}{|V_{R,FL}|} \]

\[V_S = V_{RES} + V_L + V_R = I_{load}R + I_{load}jX + V_R \]
VR = \frac{V_{NL} - V_{FL}}{V_{FL}} = \frac{V_S - V_R}{V_R} = \text{pos. no. for Lag, Unity}

Note: VR can be negative for leading P.F. load.
VR in terms of A, B, C, D.

Recall: $VR = \frac{VR_{NL} - VR_{FL}}{VR_{FL}}$

$VR = \frac{V_{S/A} + VR_{FL}}{VR_{FL}}$
IN General,

\[A_0 + jX \quad \text{Send.} \quad Y/2 \quad \text{Rec.} \quad Y/2 \quad A' \]

Short Line

\[\leq 50 \text{mi (80 km)} \]

\[\text{Fig. 6.3} \quad \text{Ex. 6.1} \]

\[V_s^+ \quad \text{Neutral} \quad \sqrt{V_R} \]
\[
\frac{X}{R} \text{ ratio determines effectiveness of } \frac{1}{k} \\
\text{Shunt C!} \quad jX - \frac{1}{k} \\
\begin{array}{c}
\tilde{V}_s \quad \tilde{V}_k \quad \tilde{I}_c \\
\mathbf{z}_\text{Bus} = \\
\begin{bmatrix}
\mathbf{z}_k \\
\end{bmatrix}
\end{array} \\
\tilde{I}_c jX - \frac{1}{k} \\
\tilde{I}_c \tilde{V}_s \\
\tilde{I}_c R \\
\tilde{V}_k
\]