Topics for Today:

- Course Info:
 - Web page: http://www.ee.mtu.edu/faculty/bamork/ee5220/
 - Software - Matlab. ATP/EMTP [License - www.emtp.org] ATP tutorials posted on our course web page
 - EE5220-L@mtu.edu (participation = min of half letter grade, 5%)

- HW#5 will be posted. Partnered exercise. Due latest Mon Feb 26th 9am.
 - Section 12.4 - detailed derivation for capacitor
 - Prob 5.3 - first do ATP simulation, then Hand Calculations
 - Prob 5.6

- Term Project - proposed topic(s) by end of next week, via short e-mail.

- Circuit Breakers - Interruption issues
 - Restrike
 - Reignition

- Cap and Reactor application
 - Dist system
 - Autotransformer tertiary
 - HV direct connection

- Transmission Lines - development of T-Line equations
Cap Application
- LV, on customer side of meter
 ⇒ Penalty for low P.F. ⇒ P.F. Correction

\[Z_L \]

\[Q_{cap} \]

\[Q_{new} \]
Compensation, VR
Dist. VR

Trans. Tie

L.V. Cops are cheaper to ref.
Compensation

- Shunt
 - Voltage Support
 - Power Transfer
 \[P_{1-2} = \frac{V_1 V_2 \sin(\delta_1 - \delta_2)}{X_{12}} \]
 - Stability

Bus

21% increase
(.95 \rightarrow 1.05 \text{pu.V})
Shunt Comp: Reactors closing

Long T-line

Ferranti: Rise

Ref: EE5280
Series Comp: C

\[P_{1-2} = \frac{V_1 V_2}{X} \sin(\delta_1 - \delta_2) \]

$X_L - X_C$
Lightning -

order of

500 kHz!
(half period)
≈ 1 ms

Switching -

250 ms
DISTRIBUTED PARAMETER T-LINES

- "LONG LINES" (>250km @ 60Hz)
- FOR LIGHTNING, EVEN VERY SHORT LINES ARE MODELED AS DIST-PARAM.

FOR INCREMENTAL LENGTH:

\[I_s = I(x) \]
\[V_s = V(x) \]
\[Z = zL = R + jX \]
\[Y = yL = G + jB \]
Making ΔX Very Small,\newline
\[\begin{cases}
 dV = IX dx \\
 dI = Vy dx
\end{cases} \quad \text{(Small Z)}
\]

Rearranging,
\[\begin{cases}
 \frac{dV}{dx} = Ix^2 \\
 \frac{dI}{dx} = Vy
\end{cases} \quad (1)
\]

Taking derivative of (1),

\[\frac{d^2V}{dx^2} = \frac{dI}{dx} z \]
Substituting into (2)

\[
\frac{d^2V}{dx^2} = \sqrt{y^2}
\]

This implicit gen'l sol'n:

\[
V = A_1 e^{\sqrt{y^2}x} + A_2 e^{-\sqrt{y^2}x}
\]

Since \(I = \frac{dV}{dx} \)

\[
I = A_1 \sqrt{\frac{y}{2}} e^{\sqrt{y^2}x} - A_2 \sqrt{\frac{y}{2}} e^{-\sqrt{y^2}x}
\]

at \(x = 0, \) \(V = V_R, \) \(I = IR \)

\[
V(0) = V_R = A_1 + A_2
\]

\[
I(0) = IR = \sqrt{\frac{y}{2}} A_1 - \sqrt{\frac{y}{2}} A_2
\]
Defining $\bar{z}_c = \sqrt{\frac{\bar{z}}{y}} = \text{Char Imp.}$

$\bar{y} = \sqrt{y \bar{z}} = \text{Propagation Const.}$

$V_R = A_1 + A_2$

$I_R = \frac{A_1 - A_2}{\bar{Z}_c}$

$\Rightarrow A_1 = \frac{(V_R + \bar{Z}_c I_R)}{2}$

$A_2 = \frac{V_R - \bar{Z}_c I_R}{2}$
In hyperbolic form,

From EQNs:

\[
\begin{bmatrix}
V_S \\
I_S
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix} \begin{bmatrix}
V_R \\
I_R
\end{bmatrix}
\]

If we match \([A \ B]\) with \(\Pi\)-Eqn

\[
z' = z \left[\frac{\sinh (\tau_1)}{\tau_1} \right]
\]

\[
y' = y' \left[\frac{\tanh (\tau_1/2)}{\tau_1/2} \right]
\]