Topics for Today:

- Course Info:
 - Web page: http://www.ee.mtu.edu/faculty/bamork/ee5220/
 - Book, references, syllabus, more are on web page.
 - Software - Matlab. ATP/EMTP [License - www.emtp.org] ATP tutorials posted on our course web page
 - EE5220-L@mtu.edu (participation = half letter grade, 5%)

- Term Project - Final Report - completed by Fri April 25th
- Term Project - On-campus teams present on Tues Apr. 29th 1pm - 3:30pm
- Applications in 3-phase systems - Chapter 5, 6, 17
 - Three-pole switching, CB issues
 - Cap Bank Switching (deenergization)
 - Reactor Switching (deenergization)
 - Synchronized switching for energization
 - Cap banks, Reactors, Transformers
Case 1

<table>
<thead>
<tr>
<th>Synch Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap</td>
</tr>
<tr>
<td>Reactors</td>
</tr>
<tr>
<td>XFMRs</td>
</tr>
</tbody>
</table>

Case 2
Synch Sw. for XFMRS. close at V_{max}.

Synch Switching - Minimize Inrush.
- Depends on: initial \(f \) (\(f(0) = ? \))

If we knew that \(f(0) = 0 \), then close CB at \(\pm V_p \).

However... \(-0.677 p < f(0) < +0.677 p\)