Homework #4

System parameters

- \(V_{\text{source}} = \frac{\sqrt{2}}{\sqrt{3}} \times 115 \text{ kV} = 93.897 \text{ kV} \)

- \(Z_{\text{source}} = 0.658 + j 6.58 \ \Omega \) \((115 \text{kV} \text{L}, 100 \text{MVA} \text{L})\)

- Breaker bushing capacitance = 250 pF

- Bus inductance

<table>
<thead>
<tr>
<th>5" Al (Ω)</th>
<th>1590 MCM (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l = 40')</td>
<td>0.00378</td>
</tr>
<tr>
<td>(l = 80')</td>
<td>0.00757</td>
</tr>
<tr>
<td>(l = 120')</td>
<td>0.01136</td>
</tr>
</tbody>
</table>

- Cap Banks

\[Q = 40 \text{ MVAR} / 3 \] , \(C_{1,2} = 8.02 \mu \text{F} \) , \(R = 4.13 \mu \Omega \)

\[Q = 14.4 \text{ MVAR} / 3 \] , \(C_{\text{distr}} = 8.03 \mu \text{F} \) , \(R = 3.31 \mu \Omega \)

- Transformer

\(Z_{\text{LV side}} = 0.0634 + j 1.903 \ \Omega \)
Case 1 - Inrush current (energizing @ Vp)

\[I_p = 2kA @ 425Hz \]
\[TRV = 180kV = 1.92 \text{ p.u. (At 115kV bus)} \]

- Can do a synchronized switching operation
 (switch-in the cap-bank @ V \text{ zero-crossing}) to reduce
 these peak values. Now,

\[I_p = 546A @ 430Hz \]
\[V_p = 108kV = 1.15 \text{ p.u.} \]

Case 2 - Back-to-back switching (Energize @ Vp)

I \text{ through breaker} = 21.8kA @ 9.2 \text{ kHz}

\[I \times f = 20.3 \times 10^3 \text{ AH} \] (exceeds \(8.4 \times 10^3\text{ rating}\))
\[TRV = 142kV = 1.51 \text{ p.u.} \]

- Use a current-limiting reactor (110\mu H)
 between \(C_1\) & \(C_2\)

\[I_p = 14.2kA @ 5.81 \text{ kHz} \] (\(I \times f = 8.2 \times 10^3 \text{ AH} \))
\[V_p = 162kV = 1.73 \text{ p.u.} \] (Could also do synchronized
 switching to reduce \(V_p\))
* Case 3 - After clearing a fault at point R

\[TRV = 18.7 \text{ kV} @ 76.2 \text{ kHz} = 1.99 \text{ p.u.} \]

* Case 4 - Outrush current @ point o

\[I_p = 46.7 \text{ kA} @ 4.78 \text{ kHz} \]
\[I_{xf} = 22.3 \times 10^3 \text{ AH} \text{z} \text{ (exceeds } 2 \times 10^3 \text{ AH}z \text{ rating)} \]

Use a current limiting reactor (680 \mu\text{H}) in series (before the cap-banks) with the bus. Then,

\[I_p = 14.3 \text{ kA} @ 1.42 \text{ kHz} \text{ (} I_{xf} = 2 \times 10^3 \text{ AH}z \text{)} \]

* Case 5 - Voltage magnification

- Single-bank energization, \(f = 425 \text{ Hz} \)
 - At 115 KV bus, \(V_p = 1.88 \text{ p.u.} \)
 - At 69 KV feeder, \(V_p = 2.34 \text{ p.u.} \)

Using synchronized switching
 - At 115 KV bus, \(V_p = 1.11 \text{ p.u.} \)
 - At 69 KV feeder, \(V_p = 1.15 \text{ p.u.} \)

- Back-to-back energization
 - At 115 KV bus, \(V_p = 1.46 \text{ p.u.}, V_p = 1.05 \text{ p.u.} \text{ (after s.s.)} \)
 - At 69 KV feeder, \(V_p = 1.65 \text{ p.u.}, V_p = 1.06 \text{ p.u.} \text{ (after synchronized sw.)} \)