The file sk.acp, the in-class demo, has been sent to you via e-mail attachment. Move this into your C:\atp\atpdraw\project subdirectory. This case may be a good starting point for this study. Attached find a hand-drawn sketch of a fictitious 115-kV capacitor bank addition project. Note: change the size the cap banks to 50 Mvar each! Values given on the sketch are total 3-phase MVA/MW/MVAR and L-L voltages. The sketch is a L-N per phase equivalent of this 3-phase system.

The aim of this exercise is to develop a simplistic per-phase simulation and investigate:
- Inrush and bus voltage recovery involving a single 115-kV Cap bank.
- Back-to-back energization (energize 2nd bank with first already energized).
- Recovery voltage following clearing a fault at point “R.” (Include CB bushing cap, see Table 13.4 in textbook).
- Outrush problems involving the old oil-filled CBs for fault at point “O.”
- Voltage magnification at point “V.”

I suggest the following approach:

1) Determine system parameters and create ATPDraw system.
2) Using a spreadsheet, develop a straight-forward way of entering the key system parameters (neglect resistance) that directly calculates the values of a) the back-to-back current limiting reactors, if needed, and b) the outrush current limiting reactor, if needed.
 Input parameters should be CB max Ip x fo rating, bus inductances, voltage levels, Cap bank MVA sizes, etc.
3) Run ATP simulations for cases with and without the current limiting reactors. Confirm the peak currents, frequencies, and Ip x fo products that the CBs are subjected to. (Refer to the CB ratings tables from lecture notes). Document the severity of the peak voltages observed for voltage recovery and voltage magnification.

Report format: Write a formal summary report. Give and explain the key equations you used. Attach your detailed hand calcs, and spread sheet. For this assignment, the content is what’s important!

In your report:

- Describe the system. Explain why the cap banks are used. Are they sized properly? Explain.
- Describe the system operating events leading up to each problem.
- Use ATP to demonstrate operating events, with simulated waveforms to illustrate problems.
- Recommend corrective actions
 - Current limiting L or R, synchronous switching, operating constraints, etc.
 - Show ATP output proving that problems have been mitigated.
- Make overall recommendations – what should the design and operations engineers do?
- Include references to useful literature. Refer to the last page of the Cap Bank Switching Tutorial for some key references.

Note - it’s expected that you may have many questions as you step through the spreadsheet and ATP implementation details. Ask away and I will respond with e-mails and copy the whole class. We’ll work our way through this together and learn some good transient simulation skills.
Homework 4 - Cap Bank Switching

The System:
(L-N Per-Phase Equal)

Key For Buswork:
(Lecture 7, 9, 13)

Not Important (negligible)
Since out of zone of high-freq oscillations.

1590 MCM
5" AL Sch 40 Tube
Basic Series Impedances (Ohm/mi):

<table>
<thead>
<tr>
<th></th>
<th>Xo/Ro</th>
<th>Ro</th>
<th>Xo</th>
<th>R1</th>
<th>X1</th>
<th>X1/R1</th>
<th>X1 (uH/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/0 Cu</td>
<td>4.721323</td>
<td>0.5867</td>
<td>2.77</td>
<td>0.303</td>
<td>0.6008</td>
<td>2.64</td>
<td>0.402 Note:</td>
</tr>
<tr>
<td>556.5 Al</td>
<td>5.76318</td>
<td>0.4704</td>
<td>2.711</td>
<td>0.1871</td>
<td>0.7421</td>
<td>3.97</td>
<td>0.373 Greenwood says 0.2 - 0.4 uH/ft</td>
</tr>
<tr>
<td>1590 Al</td>
<td>7.415919</td>
<td>0.3568</td>
<td>2.646</td>
<td>0.07313</td>
<td>0.877</td>
<td>9.26</td>
<td>0.340 is typical. 0.4 for small conductor</td>
</tr>
<tr>
<td>5" Al</td>
<td>8.11904</td>
<td>0.3041</td>
<td>2.469</td>
<td>0.0209</td>
<td>0.5005</td>
<td>23.95</td>
<td>0.251 and 0.2 for large-size bus tubing.</td>
</tr>
</tbody>
</table>

Note: Zo values seem to be typically 3x bigger than Z1. This compares to T-Line sections that have no shield/ground wire.

Damping:

\[E = \frac{1}{2} CV^2 \]

Strain Bus - Overhead Conductor

For bus conductor.

Tube/Pipe Bus - Al tube or channel

Focus on \(R/K \) ratio and \(L/\text{ft} \).

Assume \(Z_0 = Z_1 = Z_2 \) (Ground Grid!)