Topics for Today:

• Course Info:
 • Web page: http://www.ee.mtu.edu/faculty/bamork/ee5220/
 • Book, references, syllabus, more are on web page.
 • Software - Matlab. ATP/EMTP [License - www.emtp.org] ATP tutorials posted on our course web page
 • EE5220-L@mtu.edu (participation = half letter grade, 5%)

• Hmwk 10 (Probs. 5.7 & 14.5) due Mon Apr 19th 5pm.
• Term Project - Final Report - completed by Fri April 23rd
• Term Project - On-campus teams present on Wed Apr 28th (alt. Apr. 27th ?)
• Insulation design and coordination - Chapter 16
 • Shielding design for overhead lines
 • CB ratings in general
 • NESC tables for conductor separation, corona discharge
 • BIL and BSL levels vs. nominal voltage ratings
 • Comments on L-G vs. L-L overvoltages
 • Corona characteristic - nonlinear capacitance.
Chapter 16

Fig. 16.1

Strike Distance \(S = 10I^{0.6} \)
\(I = kA \)
\(S = \text{meters} \)

Quite likely to hit if it gets within \(S \) meters of conductor.

\(\beta = 0.8 \text{ - EHV} \)
0.67 - UHV

Shielding Failure Occurs over arc P-Q.

At some current value \(I_{\text{max}} \), P & Q will coincide.
No shielding failure above \(I_{\text{max}} \).
Often need to know \(P \) of \(V_r \) falling within a range of values.

\[
P(820 < V_r < 880 \text{ KV}) = \quad ? \quad \Rightarrow \quad 1922 \cdot 0.0148
\]

\[
z_1 = \frac{820 - 980}{46} = -2.174
\]

\[
z_2 = \frac{880 - 920}{46} = 0.8696
\]

\[
17.7\%
\]
Typical Spacings and Clearances in a Substation

See up-to-date NESC to verify!

<table>
<thead>
<tr>
<th>Voltage Level (KV (L-L))</th>
<th>Min Conductor Spacing</th>
<th>Min Switch Spacing Ph-Ph</th>
<th>Min L-L Phase Clearance</th>
<th>Min No. Bells at Deadend</th>
<th>Min Cable Size</th>
<th>Min Bus Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>1'6"</td>
<td>7½"</td>
<td>3'</td>
<td>18"</td>
<td>2'6"</td>
<td>7"</td>
</tr>
<tr>
<td>15</td>
<td>2'</td>
<td>10"</td>
<td>3'</td>
<td>2'</td>
<td>2'6"</td>
<td>12"</td>
</tr>
<tr>
<td>23</td>
<td>2'-6"</td>
<td>12"</td>
<td>4'</td>
<td>2'-6"</td>
<td>3"</td>
<td>15"</td>
</tr>
<tr>
<td>34.5</td>
<td>3'</td>
<td>15"</td>
<td>5'</td>
<td>3'</td>
<td>4"</td>
<td>18"</td>
</tr>
<tr>
<td>46</td>
<td>4'</td>
<td>1'-6"</td>
<td>6'</td>
<td>4'</td>
<td>5"</td>
<td>21"</td>
</tr>
<tr>
<td>69</td>
<td>5'</td>
<td>2'-5"</td>
<td>7'</td>
<td>5'</td>
<td>6"</td>
<td>31"</td>
</tr>
<tr>
<td>115</td>
<td>7'</td>
<td>3'-7½"</td>
<td>10'</td>
<td>7'</td>
<td>9"</td>
<td>53"</td>
</tr>
<tr>
<td>138</td>
<td>8'</td>
<td>4'-1"</td>
<td>12'</td>
<td>8'</td>
<td>11"</td>
<td>63"</td>
</tr>
<tr>
<td>161</td>
<td>9'</td>
<td>4'-10"</td>
<td>14'</td>
<td>14'</td>
<td>9"</td>
<td>72"</td>
</tr>
<tr>
<td>230</td>
<td>11'</td>
<td>6'-½"</td>
<td>15'</td>
<td>16'</td>
<td>11'</td>
<td>89"</td>
</tr>
<tr>
<td>230</td>
<td>13'</td>
<td>7'-3"</td>
<td>16'</td>
<td>18'</td>
<td>13'</td>
<td>105"</td>
</tr>
<tr>
<td>345</td>
<td>15'</td>
<td>8'-5½"</td>
<td>18'</td>
<td>20'</td>
<td>15'</td>
<td>119"</td>
</tr>
<tr>
<td>500</td>
<td>25'</td>
<td>12'</td>
<td>---</td>
<td>---</td>
<td>25'</td>
<td>---</td>
</tr>
<tr>
<td>765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corona
Another Issue...
Secondary effects.
Voltage Levels vs. Insulation ratings

\[
\text{Y}_{\text{II}} \left(I - G \right)
\]

\[
\left(I + H \right)
\]
if corona occurs, C becomes nonlinear.