Topics for Today:

- Project Grading Criteria:
 - References: **min of 2 texts, 2 journal papers**
 - Formal part: introduction, overview, summary, reference list. Informal part: You can attach computer output, detailed results, etc.
- Grading:
 - Clear scope
 - Writing - Organization and grammar
 - Complete treatment, summarized results
 - Valid results
 - Technically correct, adequate references
 - **Conclusions & Recommendations**

Topics for Today:
- Wrapup of Short-circuit studies
- Unbalanced fault calculations
 - Shunt Unbalanced
 - Series Unbalanced
- Transformer phase shift in pos-neg seq.
- Computer methods for fault studies
 - Avoiding singularity
 - Reduced order models, effect on dc offset
- Introduction to system stability
<table>
<thead>
<tr>
<th>Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landreman</td>
</tr>
<tr>
<td>Nickels, Parkinson</td>
</tr>
<tr>
<td>Cho</td>
</tr>
<tr>
<td>Chang, Gong</td>
</tr>
<tr>
<td>Yapa</td>
</tr>
<tr>
<td>Runowski</td>
</tr>
<tr>
<td>Myers</td>
</tr>
<tr>
<td>Brown</td>
</tr>
</tbody>
</table>

- Paper Review

- Submit Outline of Project
 - Friday 9:00 am
Fig. 4.17 Box sequence connections for shunt balanced and unbalanced conditions:
(a) balanced load or three-phase-to-ground fault with impedances; (b) three-phase fault;
(c) three-phase to ground fault; (d) shunt circuit open; (e) phase-to-ground fault through
an impedance; (f) phase-to-phase fault; (g) phase-to-phase fault through impedance;
h) phase-to-phase fault; (i) two-phase-to-ground fault through impedance; (j) two-phase
to-ground fault; (k) three-phase-to-ground fault with impedance in phase a; (l) unbalanced
load or three-phase-to-ground fault with impedance. (From E. L. Harder, Sequence Network
Connections for Unbalanced Load and Fault conditions, *The Electrical Journal*, December 1937.)
Series unbalance in loads, connect.

Fig. 4.18 Box sequence connections for series unbalanced conditions: (a) equal impedances in three phases; (b) normal balanced conditions; (c) neutral circuit open; (d) any three or four phases open; (e) phases b and c open and impedances in phase a and neutral; (f) phases b and c open; (g) phases a and neutral open and impedances in phases b and c; (h) phase a and neutral open; (i) phase a open and impedances in phases b, c, and neutral; (j) phase a open; (k) impedance in phase a; (l) equal impedances in phases b and c, impedance in neutral; (m) equal impedances in phases b and c; (n) equal impedances in phases b and c, neutral open; (o) impedances in phase a and neutral. (From E. L. Harder, Sequence Network Connections for Unbalanced Load and Fault Conditions, The Electrical Journal, December 1937.)
EX: HV Substation

25 ft between supports (~ 8 m)

Parallel Conductors:

Re-bar "cage"

L-L 3Φ Fault, 40,000 ARMS = 56,570 A peak

What is max induced force?

\[f = i (L \times B) \, N \]

\[f_{\text{insul}} = (56,570 \times 8 \text{m}) \times (0.0377) \]

\[= 1706 \times \frac{\text{kgf}}{9.8N} \times \frac{2.216}{\text{kgf}} \]

\[= 383 \text{ lbs (max)} \]

Max Groundline Moment: \(383 \times 12 = 4600 \text{ ft-lbs} \)

Note:

\[H = \frac{I}{2\pi r} \]

\[B = \mu_0 H = \frac{\mu_0 I}{2\pi r} \]

\[= \frac{(4\pi \times 10^7)(56,570)}{2\pi (\text{in})} \]

\[0.00377 \text{ T} \]
Either side.

\[Z = \frac{V}{I} \]

\[V_a = I_a R \]

\[Z = \frac{V_a}{I_a} \]

Phase Shifts & Impedances
Problem:

ECE5200 - Advanced Methods in Power Systems

- Leads to singularity (Y)

Computer Methods
\[Q_{out} = \frac{E}{\sqrt{V}} \cos \theta - \sqrt{V} \]

\[V_5 = \sqrt{100} \]

\[V_6 = \sqrt{625} \]

\[E_6 = E_7 \]

\[I_{out} = \frac{V_5}{R_{out}} \sin (\theta - 0) \]

\[\text{Diagram with various symbols and connections} \]
\[P_{in} = P_{in} \]

- **P stays constant**
- **P changes suddenly**
- **Load switching**
- **Clear**

\[\Rightarrow P_{e} = P_{out} \]
SYSTEM STABILITY

Stability: Ability of machines in system to recover from system disturbances and still remain synchronized and return to a steady-state operating point.

Types:

Steady-State Stability - Use load flow to check for:
1. Phase angle across T-line $\leq 90^\circ$
2. $0.95 < V_{bus} < 1.05$

Also - do incremental changes in operating points to check system sensitivities. - Voltage Collapse

* Transient Stability - Check major disturbances
 - Loss of generator
 - Line switching
 - Faults
 - Load switching

Track frequency changes ($f_s = 60$ Hz) and S changes.

Objective: See if machines return to synch frequency with new S's power angles.

Assumptions:

- So-called "first swing"
- P_h constant, include inertial dynamics.
- Eg doesn't change, use load flow on electrical model, good for ~ 1.0 sec
- dc offsets & harmonics ignored on side.

* This is what we'll focus on in this course.
Transient Stability (contd):
If $t>1.0$ sec is desired ("multi-swing") then can include governor & exciter.

Dynamic Stability — out to several minutes.
Effects also included:
- Governors
- Exciters
- LTC XFMRs
- Dispatch/SCADA controls

Interactions can destabilize system even several minutes after disturbance occurs.
(Even when transient stability is maintained.)
Steady-State Stability - Like power transfer

\[P = \frac{E_s E_m}{X} \sin \delta \]

\[P_{E} = \frac{E_s E_m}{X} \sin \delta \]

\[P_{E_{\text{MAX}}} = \frac{E_s E_m}{X} \]

Too High \(P_m \)

OK \(\rightarrow P_{\text{MECH}} \)

\[P = P_{\text{acc}} \text{ (depends on } s) \]

\[S \]

\[90^\circ \]

\[180^\circ \]

If \(P_m > P_{E_{\text{MAX}}} \), lose sync so must disconnect from system.

Keep \(P_{\text{MECH}} \leq P_{\text{ELECT}_{\text{MAX}}} \) to assure stability.

To increase stability, we can:

- Increase \(E_s \) or \(E_m \)
- Decrease \(X \) by
 a) Parallel lines:
 b) Series Cap:
 \[X = X_{\text{LINE}} - X_{\text{CAP}} \]
 c) Shunt Cap even helps:
 \[\frac{jX}{2} \]
 \[\frac{3X/2}{-jX_c} \]

Transfer Impedance:

\[j \left(X - \frac{X^2}{4X_c} \right) \]
For cylindrical rotor machines:

Keep $S < 90^\circ$

For salient machines, S even less, since P_{max} occurs at p_i

In reality, dangerous to operate close to P_{max}, since small increase in P_{max} will put S "over the top". Usually try to keep $S < 40^\circ$.
Transient Stability: The Problem

\[T_m = \text{mechanical torque, N-m} \]
\[T_e = \text{electromagnetic counter torque, N-m} \]
\[J = \text{mass polar moment of inertia} \]
\[B = \text{Damping torque coefficient} \]
- Bearing Friction
- Damper Winding Torque
- Windage
- Exciter Torque
- Magnetic Losses (leakage)
- Any Drag Torques in General

\[\omega_r = \text{mechanical rotor speed, rad/sec} \]

Steady-State: \(\bar{P}_m = \bar{P}_e, \ bar{T}_m = \bar{T}_e \). But:
* Loss of line, fault, load, etc., reduces \(\bar{P}_e \)
\(\bar{P}_m \) will stay constant (gradually reduce, \(t > 1 \text{ sec} \))

\(P_a = P_m - P_e = \text{Accelerating power, speeds up rotor} \)
* Loss of generator in system makes \(P_e > P_m \) and
 decelerates other generators in system.

Oscillations of machine \$S\$ w.r.t. each other is called SWING.
Adding Detail to Model

1) Governor - Measures f and (each machine)
 a) increases P_m if $f < 60$ Hz
 b) decreases P_m if $f > 60$ Hz

2) Add excitation -
 Measure V_t (bus voltage)
 a) Reduce I_f if $V_t > 1.0 \text{ p.u.}$
 b) Increase I_f if $V_t < 1.0 \text{ p.u.}$

3) Fast Valving
4) Power System Stabilizer
5) Single Pole Reclosing - Japan
6) Fast Reclosing
7) Load Shedding
8) Switched Capacitors
9) Braking Resistors

So computer simulation is a must.

To improve stability
1) Make H large
2) Reduce P_m during fault
 a) Fast Valving
 b) Gov - slow down during fault
 but too slow to react
10.1 The Swing Equation:

\[T_a = T_{ac} = T_m - T_e = \frac{J \alpha}{m} = J \frac{d\omega_m}{dt} \]

\[\uparrow \quad (T = J \alpha \iff F = ma) \]

In terms of Power,

\[\begin{align*}
 & P_m - P_e = W_{rm} J \frac{d\omega_m}{dt} \\
 & \uparrow \quad \uparrow \\
 & P_m = W_{rm} \dot{T}_m \\
 & P_e = W_{rm} \dot{T}_e
\end{align*} \]

\[\frac{\dot{T}_m}{\dot{T}_e} = \sqrt{ \frac{E_f}{\sqrt{r} } } \]

Review: \(S' = \text{electrical} \quad \text{torque angle} = \frac{\dot{B}_r}{\dot{B}_s} \)

Here, \(S \) taken as angle between \(w_{ref} \) and rotor

\[S = \frac{\dot{B}_r}{\dot{B}_s} = \frac{w_{ref}}{w_{ref}} \text{ see fig 12.2} \]

\(w_{ref} \) can be synch, or set to match some other machine in system. Usually, it is both, i.e. matches \(w \) of \(\infty \) infinite bus. If there is no infinite bus, then probably set to \(w \) of machine having largest "H".

For an \(N \)-Pole machine,

\[w_{ref} = W_{rm} \left(\frac{N_p}{2} \right) \]
The electrical angular velocity:

\[\omega_{re} = \omega_{ref} + \frac{d \delta}{dt} \]

\[\omega_{rm} = \frac{\omega_{re}}{N_p/2} \]

\[P_m - P_e = \omega_{rm} J \frac{d \omega_{rm}}{dt} \]

Substituting,

\[P_m - P_e = \left(\frac{\omega_{re}}{N_p/2} \right) J \frac{d}{dt} \left(\frac{\omega_{re}}{N_p/2} \right) \]

\[= \frac{\omega_{re}}{N_p^2/4} J \frac{d}{dt} \left(\omega_{ref} + \frac{d \delta}{dt} \right) \]

\[P_m - P_e = \frac{\omega_{re} J}{N_p^2/4} \left(\frac{d \omega_{ref}}{dt} + \frac{d^2 \delta}{dt^2} \right) \]

Converting to per unit,

\[P_{m,pu} - P_{e,pu} = \frac{\omega_{re} J}{N_p^2/4 \cdot S_{3\phi \text{ base}}} \left(\frac{d \omega_{ref}}{dt} + \frac{d^2 \delta}{dt^2} \right) \]

At this point we define

\[H = \text{Kinetic Energy of all rotating parts at } \omega_s = \frac{1}{2} J \omega_s^2 \]

Units:

- Joules
- Watts
- Seconds
\[H = \frac{1}{2} J \left(\frac{\omega_{se}}{Np} \right)^2 \]

Substituting, \[J = \frac{2 H S_{3\phi, base} N_p^2}{4 \omega_{se}^2} \]
\[J = \frac{H N_p^2 S_{3\phi, base}}{2 \omega_{se}^2} \]

If \(\omega_{se} = \omega_{re} \) (not too far wrong if stability maintained)

Substituting, \[P_m - P_e = \omega_{re} \left[\frac{H N_p S_{3\phi, base}}{Np K} \right] \left(\frac{d\omega_{ref}}{dt} + \frac{d^2\delta}{dt^2} \right) \]

\[P_m - P_e = \frac{H}{2f} \left(\frac{d\omega_{ref}}{dt} + \frac{d^2\delta}{dt^2} \right) \]

Again, \[P_m = \text{turbine input power (mech)} \] for Unit
\[P_e = \text{generator output} \]
\[H = \text{Inertia Constant in seconds} \]
\[\delta = \frac{L}{B} - \frac{\omega_{ref}}{\omega_{se}} \text{, radians} \]
\[\omega_{ref} = \text{ang. velocity of reference machine, rad/sec} \]
\[t = \text{time in seconds} \]

Term = 0 if infinite bus \(\omega_{ref} = \omega_{se} \) is used.
12.2 - Inertia

Newton's second Law: \(F = ma \)

Tangential force on differential element:
\[F_t = (dm) \frac{at}{t} = dm \frac{d\omega}{dt} \]
\[= r(dm) \frac{d\omega r m}{dt} \]
\[= r \omega r m \]

The accelerating Torque:
\[T_a = r F_t = r^2(dm) \frac{d\omega r m}{dt} \]
\[= J \alpha \quad N\cdot m \]

\[dJ = r^2 dm = \text{mass polar moment of inertia of element, (kg}\cdot\text{m}^2) \]

If material has density \(\rho \), \(dm = \rho \frac{dv}{volume} \)
\[dv = (rdr)(d\theta)(dz) \]
\[J = \int_{0}^{2\pi} \int_{0}^{z} \int_{0}^{R} \rho r^3 dr \, dz \, d\theta \]
For actual rotor, field slots and use of different materials can make this complex problem.

i.e. \[R = f(\theta, z) \]
\[z = f(z) \]

If rotor is homogeneous,

\[J = \frac{\rho R^4 z}{4} \cdot 2\pi = \frac{\pi\rho R^4 z}{2} \]

Total cylinder mass is

\[M = \rho \int_0^{2\pi} \int_0^z \int_0^R rdr dz d\theta \]

\[= \frac{\rho R^2 z}{2} \cdot 2\pi = \frac{\pi\rho R^2 z}{2} \text{ Kg} \]

Substituting,

\[J = \frac{MR^2}{2} \text{ Kg-m}^2 \]

If rotor not homogeneous, use numerical integration.
General Case:

$$\mathbf{\tau} = J \frac{d\omega_{\text{rm}}}{dt}$$

Sometimes, radius of gyration is given:

$$K = \text{radius from axis of rotation that a concentrated mass } M \text{ could be placed to give identical } M.$$

For different mass or point mass, \(J = MK^2\)

$$K = \sqrt{\frac{J}{M}}$$

If \(K > M\) are given, \(J\) can be calculated.

Possible confusion:

<table>
<thead>
<tr>
<th>SI</th>
<th>Mass</th>
<th>Weight</th>
<th>(g)</th>
<th>accel. of grav</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg</td>
<td>N</td>
<td>9.81 m/\text{sec}^2</td>
<td>\text{m/sec}^2</td>
</tr>
</tbody>
</table>

\(W = Mg\) \(\text{lb}\)

\(\text{Eng: slugs}\) \(\text{lb}\) \(32.2 \text{ ft/sec}^2\)

also \(\text{lbm vs. lbf}\)

\(M' = Mg\) \(\text{lbm}\)

\(W = Mg\) \(\text{lbf}\)

Common Practice in US: (Unfortunately):

\(J\) given as \(WK^2\)

\(W = \text{mass in lbm}\)

\(K = \text{rad. gyration in feet}\)
\[J = \text{W} K^2 \text{ lbm} - \text{ft}^2 \left(\frac{0.3048 \text{ m}^2}{\text{ft}} \right) \left(\frac{0.4536 \text{ kg}}{\text{lbm}} \right) \]

\[= \text{Kg} - \text{m}^2 \]

"If" several masses are on same shaft.

Then \(J_{\text{tot}} = J_1 + J_2 + J_3 + \ldots + J_n \)

Then: Convert
\[
H = \frac{1}{2} J_{\text{tot}} (2 \omega s/Np)^2
\]

\[S_3 \Phi, \text{BASE} \]

Conversion of \(H \) to different system base.

Ex: Gen base is 500 MVA, system base is 100 MVA

\[H_{\text{new base}} = \frac{H_{\text{old base}} S_{3\Phi, \text{old base}}}{S_{3\Phi, \text{new base}}} \]

\[H_{\text{new}} = 5 \times H_{\text{old}} \]

Typical \(H \) values:
- 2-pole thermal: 2.5 - 6.0 \(\text{on machine base} \)
- 4-pole thermal: 4.0 - 10.0 \(\text{on machine base} \)
- Hydro: 2.0 - 4.0
Nuclear Generator, \(W R^2 = 5.82 \times 10^6 \text{ lbm-ft}^2 \)
\(MVA = 1333 \text{ MVA} \)
\(N_s = 1800 \)

\[J = W R^2 \times \text{conversion factor} \]
\[= (5.82 \times 10^6 \text{ lbm-ft}^2) \left(\frac{\text{Kg}}{221 \text{lbm}} \right) \left(\frac{\text{m}}{3.28 \text{ ft}} \right)^2 \]
\[= 2.459 \times 10^5 \text{ Kg-m}^2 \]

\[H = \frac{\sqrt{2 \times 2.459 \times 10^5}}{1333 \times 10^6} \left(\frac{2 \pi (22 \times 1800)}{e_0} \right)^2 = 3.27 \text{ sec} \]

On 100 MVA system base,
\[H = 3.27 \left(\frac{1333}{100} \right) = 43.56 \text{ sec} \]

Shortcut:
\[H = 2.31 \times 10^{10} \frac{WR^2 \times RPM^2}{S \text{ machine base}} \]
\[= \frac{WR^2 \text{ in lbm-ft}^2}{MVA} \]
Coherent Machines: 2 or more machines operating in parallel, whose rotors swing together \((S_1 = S_2)\).
(Only possible if sharing equal p.u. loads, and running on same droop characteristic.)

Ex:

Unit 1: 500 MVA 0.85 PF
20 kV 3600 RPM
\(H_1 = 4.8\)

Unit 2: 1333 MVA 0.9 PF
22 kV 1800 RPM
\(H_2 = 3.27\)

System base = 100 MVA

To combine, must convert to same base.

\[H_{\text{tot}} = 4.8 \frac{500}{100} + 3.27 \frac{1333}{100} = 67.59 \text{ sec}\]

Alternate Method: \(H = \left(\frac{\text{MVA}}{\text{MVA}}\right)\)

\[H = \left(\frac{4.8 \text{ MVA}}{100}\right)\text{MVA} + \left(3.27 \text{ MVA}\right)\text{MVA}\]

100 MVA

\(S\) & \(W\) must be in electrical units --
Since one machine is 4-pole, other is 2-pole.