1 Introduction

This tutorial explains how Altera’s library modules can be included in Verilog-based designs, which are implemented by using the Quartus® II software.

Contents:

- Example Circuit
- Library of Parameterized Modules
- Augmented Circuit with an LPM
- Results for the Augmented Design
2 Background

Practical designs often include commonly used circuit blocks such as adders, subtractors, multipliers, decoders, counters, and shifters. Altera provides efficient implementations of such blocks in the form of library modules that can be instantiated in Verilog designs. The compiler may recognize that a standard function specified in Verilog code can be realized using a library module, in which case it may automatically infer this module. However, many library modules provide functionality that is too complex to be recognized automatically by the compiler. These modules have to be instantiated in the design explicitly by the user. Quartus® II software includes a library of parameterized modules (LPM). The modules are general in structure and they are tailored to a specific application by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:

- Library of parameterized modules (LPMs)
- Configuring an LPM for use in a circuit
- Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus II version 14.0, but other versions of the software can also be used. When selecting a device within Quartus II, use the device names associated with FPGA chip on the DE-series board by referring to Table 1.

<table>
<thead>
<tr>
<th>Board</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE0-Nano</td>
<td>Cyclone IVE EP4CE22F17C6</td>
</tr>
<tr>
<td>DE1-SoC</td>
<td>Cyclone V SoC 5CSEMA5F31C6</td>
</tr>
<tr>
<td>DE2-115</td>
<td>Cyclone IVE EP4CE115F29C7</td>
</tr>
</tbody>
</table>

Table 1. DE-series FPGA device names

3 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract, and accumulate n-bit numbers using the 2’s complement number representation. The two primary inputs are numbers \(A = a_{n-1}a_{n-2}\cdots a_0 \) and \(B = b_{n-1}b_{n-2}\cdots b_0 \), and the primary output is \(Z = z_{n-1}z_{n-2}\cdots z_0 \). Another input is the AddSub control signal which causes \(Z = A + B \) to be performed when AddSub = 0 and \(Z = A - B \) when AddSub = 1. A second control input, Sel, is used to select the accumulator mode of operation. If Sel = 0, the operation \(Z = A \pm B \) is performed, but if Sel = 1, then B is added to or subtracted from the current value of Z. If the addition or subtraction operations result in arithmetic overflow, an output signal, Overflow, is asserted.

To make it easier to deal with asynchronous input signals, they are loaded into flip-flops on a positive edge of the clock. Thus, inputs A and B will be loaded into registers Areg and Breg, while Sel and AddSub will be loaded into flip-flops SelR and AddSubR, respectively. The adder/subtractor circuit places the result into register Zreg.
The required circuit is described by the Verilog code in Figure 2. For our example, we use a 16-bit circuit as specified by $n = 16$. Implement this circuit as follows:

- Create a project `addersubtractor`.
- Include a file `addersubtractor.v`, which corresponds to Figure 2, in the project.
- Select the FPGA chip that is on the DE-series board. A list of device names on DE-series boards can be found in Table 1.
- Compile the design.
- Simulate the design by applying some typical inputs.
module addersubtractor (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);
 parameter n = 16;
 input [n-1:0] A, B;
 input Clock, Reset, Sel, AddSub;
 output [n-1:0] Z;
 output Overflow;
 reg SelR, AddSubR, Overflow;
 reg [n-1:0] Areg, Breg, Zreg;
 wire [n-1:0] G, H, M, Z;
 wire carry_out, over_flow;

 assign H = Breg ^ {n{AddSubR}};
 mux2to1 multiplexer (Areg, Z, SelR, G);
 defparam multiplexer.k = n;
 adderk nbit_adder (AddSubR, G, H, M, carryout);
 defparam nbit_adder.k = n;
 assign over_flow = carryout ^ G[n-1] ^ H[n-1] ^ M[n-1];
 assign Z = Zreg;

 always @(posedge Reset or posedge Clock)
 if (Reset == 1)
 begin
 Areg <= 0; Breg <= 0; Zreg <= 0;
 SelR <= 0; AddSubR <= 0; Overflow <= 0;
 end
 else
 begin
 Areg <= A; Breg <= B; Zreg <= M;
 SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
 end
 endmodule

// k-bit 2-to-1 multiplexer
module mux2to1 (V, W, Sel, F);
 parameter k = 8;

... continued in Part b

Figure 2. Verilog code for the circuit in Figure 1 (Part a)
input [k-1:0] V, W;
input Sel;
output [k-1:0] F;
reg [k-1:0] F;

always @(V or W or Sel)
 if (Sel == 0)
 F = V;
 else
 F = W;
endmodule

// k-bit adder
module adderk (carryin, X, Y, S, carryout);
 parameter k = 8;
 input [k-1:0] X, Y;
 input carryin;
 output [k-1:0] S;
 output carryout;
 reg [k-1:0] S;
 reg carryout;

 always @(X or Y or carryin)
 {carryout, S} = X + Y + carryin;
endmodule

Figure 2. Verilog code for the circuit in Figure 1 (Part b).

4 Library of Parameterized Modules

The LPMs in the library of parameterized modules are general in structure and they can be configured to suit a specific application by specifying the values of various parameters. Select Help > Search and type Megafunctions/LPM in the search box. Click Megafunctions/LPM in the search results to see a listing of the available LPMs. One of them is an adder/subtractor module called lpm_add_sub. Select this module to see its description. The module has a number of inputs and outputs, some of which may be omitted in a given application. Several parameters can be defined to specify a particular mode of operation. For example, the number of bits in the operands is specified in the parameter LPM_WIDTH. The LPM_REPRESENTATION parameter specifies whether the operands are to be interpreted as signed or unsigned numbers, and so on. Templates on how an LPM can be instantiated in a hardware description language are given in the description of the module. Using these templates is somewhat cumbersome, so Quartus II software provides a wizard that makes the instantiation of LPMs easy.

We will use the lpm_add_sub module to simplify our adder/subtractor circuit defined in Figures 1 and 2. The augmented circuit is given in Figure 3. The lpm_add_sub module, instantiated under the name megaddsub, replaces the adder circuit as well as the XOR gates that provide the input H to the adder. Since arithmetic overflow is one of
the outputs that the LPM provides, it is not necessary to generate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_lpm, and then create a project addersubtractor2. Choose the same device as we previously selected (Refer to Table 1) to allow a direct comparison of implemented designs.

![Diagram of the augmented adder/subtractor circuit.](image)

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit specified as a Verilog module that will be instantiated in the top-level Verilog design module. The Verilog module for the LPM subcircuit is generated by using a wizard as follows:

1. Select **Tools > IP Catalog**, which opens the IP Catalog window in which the user can select the desired LPM.
2. In the IP Catalog panel shown in Figure 4, expand **Library > Basic Functions > Arithmetic** and double-click on **LPM_ADD_SUB**
Figure 4. Choose an LPM.

Figure 5. Create an LPM from the available library.
3. In the pop-up box shown in Figure 5, choose Verilog as the type of output file that should be created. The output file must be given a name; choose the name megaddsub.v and indicate that the file should be placed in the directory tutorial_lpm as shown in the figure. Press Next.

![Image of the LPM_ADD_SUB MegaWizard Plug-In Manager](image.png)

Figure 6. Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the operating mode in which one of the ports allows performing both addition and subtraction of the input operand, under the control of the add_sub input. A symbol for the resulting LPM is shown in the top left corner. Note that if add_sub = 1 then result = A + B; otherwise, result = A − B. This interpretation of the control input and the operation performed is different from our original design in Figures 1 and 2, which we have to account for in the modified design. Observe that we have included this change in the circuit in Figure 3. Click Next.
5. In the box in Figure 7, specify that the values of both inputs may vary and select Signed for the type of addition/subtraction. Click Next.
6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be specified. Since we need the overflow signal, make the Create an overflow output choice and press Next.
7. In the box in Figure 9 say **No** to the pipelining option and click **Next**.

8. Figure 10 shows the simulation model files needed to simulate the generated design. Press **Next** to proceed to the final page.
9. Figure 11 gives a summary which shows the files that the wizard will create. Press Finish to complete the process.
10. The box in Figure 12 may pop up. If it does, press Yes to add the newly generated files to the project.

![Figure 12. Add the new files to the project.](Image)
5 Augmented Circuit with an LPM

We will use the file `megaddsub.v` in our modified design. Figure 13 depicts the Verilog code in this file; note that we have not shown the comments in order to keep the figure small.

```verilog
// Adder/subtractor module created by the MegaWizard
module megaddsub (  
    add_sub,  
    dataa,  
    datab,  
    overflow,  
    result);

input add_sub;  
input [15:0] dataa;  
input [15:0] datab;  
output overflow;  
output [15:0] result;  
wire sub_wire0;  
wire [15:0] sub_wire1;  
wire overflow = sub_wire0;  
wire [15:0] result = sub_wire1[15:0];

lpm_add_sub lpm_add_sub_component (  
    .dataa (dataa),  
    .add_sub (add_sub),  
    .datab (datab),  
    .overflow (sub_wire0),  
    .result (sub_wire1));

defparam  
    lpm_add_sub_component.lpm_direction = "UNUSED",  
    lpm_add_sub_component.lpm_hint = "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO",  
    lpm_add_sub_component.lpm_representation = "SIGNED",  
    lpm_add_sub_component.lpm_type = "LPM_ADD_SUB",  
    lpm_add_sub_component.lpm_width = 16;
endmodule
```

Figure 13. Verilog code for the ADD_SUB LPM.

The modified Verilog code for the adder/subtractor design is given in Figure 14. Put this code into a file `addersubtractor2.v` under the directory `tutorial_lpm`. The differences between this code and Figure 2 are:
• The **assign** statements that define the *over_flow* signal and the XOR gates (along with the signal defined as **wire** H) are no longer needed.

• The *adderk* instance of the adder circuit is replaced by *megaddsub*. Note that the *dataa* and *datab* inputs shown in Figure 6 are driven by the *G* and *Breg* vectors, respectively. Also, the inverted version of the *AddSubR* signal is specified to conform with the usage of this control signal in the LPM.

• The *adderk* module is deleted from the code.

```verilog
// Top-level module
module addersubtractor2 (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);

  parameter n = 16;
  input [n-1:0] A, B;
  input Clock, Reset, Sel, AddSub;
  output [n-1:0] Z;
  output Overflow;
  reg SelR, AddSubR, Overflow;
  reg [n-1:0] Areg, Breg, Zreg;
  wire [n-1:0] G, M, Z;
  wire over_flow;

  // Define combinational logic circuit
  mux2to1 multiplexer (Areg, Z, SelR, G);
  defparam multiplexer.k = n;
  megaddsub nbit_adder (~AddSubR, G, Breg, M, over_flow);
  assign Z = Zreg;

  // Define flip-flops and registers
  always @(posedge Reset or posedge Clock)
  begin

  ... continued in Part b

  Figure 14. Verilog code for the circuit in Figure 3 (Part a)
if (Reset == 1)
begin
    Areg <= 0; Breg <= 0; Zreg <= 0;
    SelR <= 0; AddSubR <= 0; Overflow <= 0;
end
else
begin
    Areg <= A; Breg <= B; Zreg <= M;
    SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
end
endmodule

// k-bit 2-to-1 multiplexer
module mux2to1 (V, W, Selm, F);
    parameter k = 8;
    input [k-1:0] V, W;
    input Selm;
    output [k-1:0] F;
    reg [k-1:0] F;
    always @(V or W or Selm)
    if (Selm == 0)
        F = V;
    else
        F = W;
endmodule

Figure 14. Verilog code for the circuit in Figure 3 (Part b).

If the megaddsub.v file has not been included in the project (e.g. if you answered No in the box in Figure 12, or possibly if the box did not show up at all), you need to include it manually. To include the megaddsub.v file in the project, select Project > Add/Remove Files in Project to reach the window in Figure 15. The file addersubtractor2.v should already be listed as being included in the project. Browse for the other files by clicking the button File name: ... to reach the window in Figure 16. Select the file megaddsub.v and click Open, which returns to the window in Figure 15. Click Add to include the file and then click OK. Now, the modified design can be compiled and simulated in the usual way.
Figure 15. Inclusion of the new file in the project.
Figure 16. Specify the `megaddsub.v` file.

6 Results for the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 17. Observe that the modified design is implemented with a similar number of logic elements compared to using the code in Figure 2.
Figure 17. Compilation Results for the Augmented Circuit.

Copyright ©2014 Altera Corporation.