Combinatorial Probability Review

- Given Two Events A & B.
 - *Independent* ($A \perp B$) ⇒
 * Status of A or B has no impact on status of the other
 * Knowledge of A give no information about B (and vice versa)
 - *Mutually Exclusive (Mutex)*) ⇒
 * If A is true, then B must be false (and vice versa)
 * No more than one of A & B can be true at any given time
 - *Collectively Exhaustive (Collex)*) ⇒
 * A & B cover the entire space of all possibilities
 * At least one of A & B must be true at all times
 - *Mutually Exclusive and Collectively Exhaustive (MECE)*) ⇒
 * A & B Partition the space of all possibilities
 * Exactly one of A & B must be True at all times

- Conditional Probabilities for (A & B)
 - $Pr(A \mid B) = Probability$ that A is True, given that B is True
 - *Probabilities in Specific Cases:*
 * Generic: $Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$
 * Indep: $Pr(A \mid B) = \frac{Pr(A) \times Pr(B)}{Pr(B)} = Pr(A)$
 * Mutex: $Pr(A \mid B) = 0$
 * Collex: $Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)} = generic$
 * MECE: $Pr(A \mid B) = 0 = mutex$
Combinatorial Probability Review

• Intersection of Two Events (A & B)

 • \((A \cap B) = (A \land B) = \)

 \textit{Event in which both A and B are true}

 • Probabilities in Specific Cases:

 * Generic: \(\Pr (A \cap B) = \Pr(A) \cdot \Pr(B|A) \)
 \(= \Pr(B) \cdot \Pr(A|B) \)

 * Indep: \(\Pr (A \cap B) = \Pr(A) \cdot \Pr(B) \)

 * Mutex: \(\Pr (A \cap B) = 0 \)

 * Collex: \(\Pr (A \cap B) = \Pr(A) \cdot \Pr(B|A) = \text{generic} \)

 * MECE: \(\Pr (A \cap B) = 0 = \text{mutex} \)

• Union of Two Events (A & B)

 • \((A \cup B) = (A \lor B) = \)

 \textit{Event in which A or B or both are true}

 • Probabilities in Specific Cases:

 * Generic: \(\Pr (A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \)
 \(= \Pr(A) + \Pr(B) - \Pr(A)\Pr(B|A) \)

 * Indep: \(\Pr (A \cup B) = \Pr(A) + \Pr(B) - \Pr(A)\Pr(B) \)

 * Mutex: \(\Pr (A \cup B) = \Pr(A) + \Pr(B) \)

 * Collex: \(\Pr (A \cup B) = 1.0 \)

 * MECE: \(\Pr (A \cup B) = \Pr(A) + \Pr(B) = 1.0 \)