












2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586048, IEEE
Transactions on Cloud Computing

7

Suppose that one can compute k∗(x) such that k∗(x) =
I f (X i )�a g(x;u)

� (a) . One has

bδ(a) = 1
n

P n
i=1 If (X i )≤a

g(X i )
k �(X i )

= δ(a) (21)

The technical difficulty is that k∗ cannot be computed ex-
plicitly. Therefore, the cross entropy technique uses a PDF
which well approximates k∗(x). This PDF has the property
that it minimizes the so-called cross entropy between the
two PDFs k(x) and g(x, v), which is

d(k, g) = Eg ln
k(X )
g(X ) =

R
k(x) ln k(x)dx−

R
k(x) ln g(x)dx (22)

Plugging this into the original functions, one has

argmaxv
R
k∗(x) ln g(x, v)dx (23)

which is

argmaxvEu If (X )≤a ln g(X, v) (24)

The cross entropy technique uses importance sampling tech-
nique again with the new parameter w such that

argmaxvEu If (X )≤a
f (x;u)
f (x;w ) ln g(X, v) (25)

Subsequently, the solution to the original minimization
problem can be written as

bv∗ = argmaxv
1
n

P n
i=1 If (X i )≤a

f (X i ;u)
f (X i ;w ) ln g(Xi , v) (26)

where the samples X are generated using g(x,w). Refer to
[60], [68] for the further details.

4.3 Cross Entropy Based Scheduling Algorithm
This work proposes a Cross Entropy based Scheduling
Scheme (CESS) Algorithm to optimize the QoS and the
waiting time. The CESS algorithm is iteratively proceeded
to the solution by updating the probability density function
(PDF) throughout the whole optimization procedure. This
PDF is used to depict the candidate job assignments and
employed to generate samples during each iteration. In this
work, the Gaussian distribution is employed as the PDF
function to solve the scheduling problem. Note that, the
sample here denotes a scenario of the job assignment. On
the other hand, the PDF are updated by elite samples in each
iteration, where elite samples are job assignments which are
high quality solutions in terms of the QoS and the waiting
time.

Figure 6 shows the details of the CESS algorithm and
Figure 7 shows an example of one iteration of the algorithm.
The proposed algorithm first initialize the PDF array for all
Cloud datacenters. Each Cloud datacenter is associated with
a PDF over the its selection index (SI), an variable indicating
the preference of our selection. A higher SI implies higher
probability for the corresponding Cloud datacenter to be
selected. If it is not the first iteration, the PDF array is
inherited from the last iteration. Otherwise, each PDF is
initialized with the same mean and variance, as indicated
in Figure 7.

Subsequently, n samples are generated according to the
PDF array. For each sample, a selection score is generated
for each Cloud datacenter according to the corresponding
PDF. The Cloud datacenter with the largest selection score
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Fig. 6: Cross Entropy Based Scheduling Algorithm Flow

is the one selected for that sample. For example, for sample
1 in Figure 7, Cloud datacenter 1 has the largest score of 0.6,
so it is selected in that sample. Similarly, Cloud datacenter 2
is selected in sample 2. For the case in which several Cloud
datacenters share the same largest selection scores, the one
with the largest mean on its PDF is selected. The reason is
that, statistically, the one with the largest mean on the PDF
performs the best.

After n samples are generated, each one is evaluated by
QoS and sojourn time. k samples with the best QoS and
Sojourn time form the set of elite samples. For the Cloud
datacenter selected for elite samples, the mean is increased
for the corresponding PDF. For each PDF, the variance is
decreased. For example, as shown in Figure 7, suppose
sample 1 and sample 2 are elite samples. Since Cloud
datacenter 1 and 2 are the selected for the two samples,
the PDFs are updated with larger mean. In this way, the
Cloud datacenters with better QoS and sojourn time become
more likely to be generated while the algorithm approaches
convergence. If the algorithm goes through λ iterations or all
samples selects the same Cloud datacenter, the convergence
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Fig. 7: Example of one iteration of CESS algorithm. The updated PDF for each is indicated by red curves.

criterion is met. After convergence, the job is assigned to
the Cloud datacenter for the sample with the best QoS and
sojourn time.

Straight forward implementation of the CESS algorithm
would suffer from Cloud datacenter overloading issue. The
reason is that the algorithm tends to assign every job to
the Cloud datacenter with the best QoS. Consequently, the
best Cloud datacenter becomes overloaded. To alleviate the
issue, the load-balance driven PDF adjustment is proposed.
That is, the mean value of the PDF of the Cloud datacenters
selected is intentionally increased. As a result, the chance
for a Cloud datacenter to be repeated selected is decreased
and the loads are more evenly distributed over the Cloud
datacenters.

5 EXPERIMENTAL RESULTS

The proposed cross entropy based QoS-aware Workload
scheduling with the Stochastic Modeling technique is imple-
mented in C++ and tested on a machine with 2.8 GHz Intel®

CoreTM i5 CPU, 4 GB memory and 64 bit operating system.
Due to inaccessibility to real world distributed datacenters,
we construct a set of 500 synthetic test cases with up to 1000
VOs and 50 Cloud datacenters.

To demonstrate the superiority of our Cross Entropy
based Scheduling Scheme (CESS) algorithm, we compare it
with the baseline greedy algorithm. The baseline algorithm
always greedily assigns the incoming jobs to the Cloud
datacenter with the best Quality of Service (QoS) and least
sojourn time. Note that, the QoS value includes the reliabil-
ity and security values with weighted factors. The solutions
to both algorithms on each test case is evaluated using the
following metrics.

• Accumulative sojourn time of all jobs. Since our
target is to minimize the average queuing time for all
jobs, the scheduling quality is inversely proportional
to this metric.

• Accumulative QoS fitness score of all jobs provided
by all Cloud datacenters. Each QoS fitness score
is the weighted sum of timeliness score, reliability
score and security score. A higher QoS fitness score
suggests faster execution time, higher reliability and

better security. Apparently, the scheduling solution
quality is proportional to this metric.

The comparison between the baseline greedy algorithm
and our CESS algorithm is shown in Table 1. We have the
following observations.

• In contrast to the baseline algorithm, our CESS al-
gorithm generates better accumulative QoS on every
test case. Statistically, the QoS is improved by 56.1%
on average from the baseline algorithm. The reason is
that our algorithm optimizes the scheduling of every
job in terms of the QoS and the sojourn time.

• Comparing with the greedy algorithm, the proposed
CESS algorithm can save up to 25.4% waiting time.
On average, the waiting time is saved by 9.2%. The
greedy algorithm tends to assign all jobs to the site
with the best QoS. Apparently it overloads the Cloud
datacenter, resulting in larger sojourn time. In con-
trast, the PDF performance-tuning in our algorithm
mitigates the overburden of Cloud datacenters. It
limits the probability that a particular Cloud data-
center is frequently selected, so that jobs are evenly
distributed over the Cloud datacenters. Consequent-
ly, the accumulative sojourn time is decreased.

• The proposed algorithm are performed very effi-
ciently. The results over all test cases can be within
864.55 seconds on average. Apparently, the runtime
scales only linearly with test cases of different sizes.

• Although the waiting time of the greedy algorithm
are quite close to the proposed algorithm, the QoS of
the proposed algorithm dominates the greedy one.

To assess the performance of our algorithm in real world,
we evaluate our CESS algorithm with different job arrival
rate and Cloud service rate. The resulting sojourn time
and QoS are shown in Figure 8. We have the following
observations.

• Within the same period of time, the accumulative
QoS and waiting time is proportional to the job
arrival rate. As the job arrival rate increases, more
jobs are handled by the Cloud datacenters. Since
each job, handled by a Cloud datacenter, produces
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Fig. 8: QoS and waiting comparison with different job arrival rate and Cloud service rate

TABLE 1: Comparisions of QoS, waiting time and runtime among the greedy algorithm and the proposed CESS algorithm
with varying sizes when tasks are assigned to a cluster system.

Testcase Number of Greedy Algorithm CESS Algorithm Improvement
Size Clouds QoS Waiting Time Runtime(ms) QoS Waiting Time Runtime(s) QoS Waiting Time

50-100 10 47995.7 6748.6 1.38 64071.5 5037.7 30.11 33.5% 25.4%
101-200 20 125640.2 15984.0 4.32 180122.1 14214.51 178.37 43.4% 11.1%
201-400 30 252917.5 55384.2 9.10 378107.5 52555.5 567.75 49.5% 5.1%
401-600 40 409185.2 119858.9 14.86 628853.1 115267.9 1195.19 53.7% 3.8%
601-1000 50 630207.1 256373.7 25.81 983728.9 255296.8 2351.33 56.1% 0.0%
Average - 293189.2 90869.88 11.09 446976.64 88474.49 864.55 47.2% 9.08%

a QoS value, the accumulative QoS increases. Larg-
er waiting time can be explained by the gird site
overloading effect. With the same Cloud service rate,
increasing arrival rate requires Cloud datacenters to
handle more jobs. Consequently, the accumulative
waiting time increases.

• For the same amount of jobs with the same job
arrival rate, both the accumulative QoS and the
waiting time can be improved by increasing the
Cloud service rate. Apparently the waiting time is in-
versely proportional to Cloud service rate. The PDF
performance-tuning in our algorithm contributes to
the improved QoS. With higher Cloud service rate,
the Cloud datacenter overloading issue is mitigat-
ed. Since each Cloud datacenter is able to handle
more jobs, the PDF performance-tuning intelligently
assigns more jobs to sites with better QoS. As a result,
the accumulative QoS is improved.

• By increasing both the job arrival rate and the Cloud
service rate, both QoS and waiting time increase.
Again, increment in accumulative QoS is due to the
additional jobs, each contributing a QoS value to
the accumulative QoS. In contrast to the case with
higher job arrival rate and the same service rate,
the waiting time does not increase dramatically with
the job arrival rate. It suggests that the severity of
Cloud datacenter overloading is significantly allevi-
ated. Therefore, our algorithm has the capacity to

be deployed in the real world, given steady service
rate/job arrival rate ratio.

6 CONCLUSION

Cloud computing, which delivers computing as a service,
has emerged as a promising computing paradigm which
offers vast computing power and flexibility. However, it
faces many challenges such as system modeling with varia-
tions and optimization scheduling issues. This work pro-
poses a stochastic modeling of workload scheduling for
the cloud computing environment considering timeliness,
security and reliability. A cross entropy based QoS-aware
workload scheduling technique is developed to compute
scheduling solutions optimizing the QoS metric. Our ex-
periments on 500 testcases demonstrate that the proposed
approach significantly outperforms the greedy algorithm
with up to 56.1% QoS improvement with largest size of
testcases and 25.4% waiting time improvement with the
testcases which has the size of 50− 100.
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