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Abstract Discrete gate sizing is a critical optimization in VLSI circuit design. Given
a set of available gate sizes, discrete gate sizing problem asks to assign a size to
each gate such that the delay of a combinational circuit is minimized while the cost
constraint is satisfied. It is one of the most studied problems in VLSI computer-aided
design. Despite this, all of the existing techniques are heuristics with no performance
guarantee. This limits the understanding of the discrete gate sizing problem in theory.

This paper designs the first fully polynomial time approximation scheme
(FPTAS) for the delay driven discrete gate sizing problem. The proposed approxima-
tion scheme involves a level based dynamic programming algorithm which handles
the specific structures of a discrete gate sizing problem and adopts an efficient oracle
query procedure. It can approximate the optimal gate sizing solution within a factor
of (1 + ε) in O(n1+cm3c/εc) time for 0 < ε < 1 and in O(n1+cm3c) time for ε ≥ 1,
where n is the number of gates, m is the maximum number of gate sizes for any gate,
and c is the maximum number of gates per level. The FPTAS needs the assumption
that c is a constant and thus it is an approximation algorithm for the restricted discrete
gate sizing problem.

Keywords Combinatorial optimization · VLSI design · Delay optimization ·
Discrete gate sizing · Fully polynomial time approximation scheme

1 Introduction

Discrete gate sizing is a critical optimization due to its effectiveness in obtaining
various delay and power trade-off in circuits, which has been widely deployed in

C. Liao (�) · S. Hu
Department of Electrical and Computer Engineering, Michigan Technological University, Houghton,
MI 49931, USA
e-mail: cliao@mtu.edu

S. Hu
e-mail: shiyan@mtu.edu

mailto:cliao@mtu.edu
mailto:shiyan@mtu.edu


J Comb Optim

chip layout design. In the problem, a combinational circuit is given which can be
represented by a directed acyclic graph (DAG). Each node corresponds to a gate and
each gate is associated with a set of available gate sizes where different gate sizes
lead to different delays and powers (or costs). The discrete gate sizing problem asks
to assign appropriate size to each gate such that the longest path delay is minimized
while the sum of costs over all gates is no greater than a cost bound.

There exist a large multitude of previous works with different objectives for gate
sizing. The standard gate sizing techniques for exploring delay and power tradeoff
are proposed in Chuang et al. (1995), Chen et al. (1999), Tennakoon and Sechen
(2002), Sundararajan et al. (2002), Wang et al. (2007), Fishburn and Dunlop (1985),
Sapatnekar et al. (1993), Berkelaar and Jess (1990), Murugavel and Ranganathan
(2004). As the extensions to them, gate sizing techniques considering process varia-
tions are designed in Mani and Orshansky (2004), Singh et al. (2005), Mahalingam
et al. (2006), gate sizing techniques for cross-talk noise reduction are proposed in
Sinha and Zhou (2004), Hanchate and Ranganathan (2006), a reliability driven gate
sizing technique is proposed in Zhou and Mohanram (2006), and a security aware
gate sizing technique is proposed in Bhattacharya and Ranganathan (2008).

Unfortunately, most of the existing techniques such as a Lagrangian relaxation
based technique in Chen et al. (1999) and a posynomial programming based approach
in Fishburn and Dunlop (1985) can only handle the continuous gate sizing problem
which assumes that gate sizes can be any values within certain range (Hu et al. 2007).
This assumption is not realistic since it is difficult and not practical to manufacture
gates with continuous sizes. In practice, only a small set of gate sizes are available,
which imposes a pressing need for the techniques to handle discrete gate sizes. To ob-
tain a discrete gate sizing solution, rounding the sizes of a continuous solution to dis-
crete sizes is fast and intuitive. However, it will result in the significant degradation of
circuit delay compared to the obtained continuous gate sizing solution (Hu et al. 2007;
Beeftink et al. 1998). This motivates some recent works to design combinatorial algo-
rithms which directly handle discrete gate size, such as a continuous solution guided
dynamic programming technique in Hu et al. (2007), a network-flow based approach
in Ren and Dutt (2008), a parallelization and randomization based technique in Wu
et al. (2008), and a multi-dimensional gradient descent based algorithm in Coudert
(1997). These algorithms are effective, however, they are all heuristics without any
theoretical guarantee on the quality of their discrete gate sizing solutions. This limits
the understanding of the discrete gate sizing problem in theory.

This paper aims to deepen the understanding of the discrete gate sizing problem
from the theoretical point of view. Recall that given a minimization problem, an al-
gorithm is said to approximate the optimal solution within a factor α if this algorithm
can always produce a solution whose objective function value is at most α times the
value of the optimal solution. The problem admits a fully polynomial time approx-
imation scheme (FPTAS) if there is an algorithm which approximates the optimal
solution within a factor of (1 + ε) for any ε > 0 and runs in time polynomial in both
of the input size and 1/ε.

In this paper, the first fully polynomial time approximation scheme is designed for
the delay driven discrete gate sizing problem. The algorithm works under the scal-
ing and rounding framework of Hassin (1992), Ergun et al. (2002), Vazirani (2001).



J Comb Optim

The proposed approximation scheme involves a level based dynamic programming
algorithm which handles the specific structures in gate sizing problem and adopts an
efficient oracle query procedure. It can approximate the optimal gate sizing solution
within a factor of (1 + ε) in O(n1+cm3c/εc) time for 0 < ε < 1 and in O(n1+cm3c)

time for ε ≥ 1, where n is the number of gates, m is the maximum number of gate
sizes for any gate, and the constant c is the maximum number of gates per level. The
technique needs the assumption that c is a constant, which is why our algorithm is
said to approximate the restricted discrete gate sizing. Due to the fact that the discrete
gate sizing problem is strongly NP-hard (Ning 1994), making such an assumption is
reasonable. Note that in characterizing the delay of each gate, an appropriate delay
model is needed. In this work, the widely used Elmore delay model (Elmore 1948) is
adopted. Other delay models, such as those used in Kasamsetty et al. (2000), Ketkar
et al. (2000), Roy et al. (2007), Xie and Davoodi (2008) where the delay is additive
and the gate delay is only related to the gate and its fan-outs, can also be handled in
our discrete gate sizing technique.

The rest of the paper is organized as follows: Sect. 2 presents the notations and
the problem formulation of the discrete gate sizing problem. Section 3 proposes our
approximation scheme to solve the discrete gate sizing problem and analyzes the time
complexity and approximation ratio. A summary of work is given in Sect. 4.

2 Preliminaries

2.1 Notations and definitions

A combinational circuit can be represented by a directed acyclic graph (DAG). Given
a DAG G = (V ,E) with n = |V | nodes, each node corresponds to a gate. Following
the convention of the gate sizing literature, let the primary input gates, denoted by
PI, specify the nodes with zero in-degree, and the primary output gates, denoted by
PO, specify the nodes with zero out-degree. Refer to Fig. 1. Think of pushing a flow
into the primary input gates of G and it goes from g1 to g3. g1 is called upstream
to g3, and g3 is called downstream to g1. Denote by fin(g) the set of fan-in (input)
gates of gate g and by fout(g) the set of fan-out (output) gates of gate g. For example,
fin(g3) = {g1} and fout(g1) = {g3, g4, g7}.

For each gate g, denote by s(g) the assigned gate size. It needs to be in a set
of available gate sizes for g, denoted by S(g). Denote by m the maximum num-
ber of gate sizes for any gate, i.e., |S(g)| ≤ m,∀g. In our gate sizing problem, the
gate delay of a gate g with a size of s(g), denoted by d(g), is computed according
to Elmore delay model (Elmore 1948) which is widely used in VLSI design. Note
that other delay models, such as those used in Kasamsetty et al. (2000), Ketkar et
al. (2000), Roy et al. (2007), Xie and Davoodi (2008) where the delay is additive
and the gate delay is only related to the gate and its fan-outs, can also be handled
in our technique. Denote by C(g, s(g)) and R(g, s(g)) the capacitance and resis-
tance of gate g when it is assigned with gate size s(g), respectively. d(g) is the
product of its resistance and the total capacitance of all its fan-out gates, i.e., d(g) =
R(g, s(g)) ·∑∀fout(g) C(fout(g), s(fout(g)). The arrival time at a gate is defined as the
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Fig. 1 Illustration of a levelized circuit

maximum current arrival time of all paths at the input of this gate plus its gate delay,
i.e., the arrival time at its output. Denote by t (g) the arrival time at gate g. One has,
t (g) = max{t (fin(g))}+d(g). The arrival times at the input of all primary input gates
are 0, and the arrival times at all the primary input gates are the gate delay of them-
selves. As in most papers about gate sizing for combinational circuit (Coudert 1997;
Hanchate and Ranganathan 2006), we assume that there is a non-sizable gate
(flipflop), linking to all the primary output gates. The delay of a circuit refers to the
maximum arrival time at any primary output gate of the circuit, which is also called
the longest path delay. The discrete gate sizing problem considered in this paper is to
minimize the longest path delay through appropriately assigning the gate size at each
gate since different gate sizes lead to different delays. It is worth mentioning that an-
other discrete gate sizing formulation is also very important which asks to minimize
the total cost of the circuit subject to the delay constraint. It is interesting to design a
dedicated algorithm for this problem as well.

Refer to the example in Fig. 2 for illustrating the arrival time and gate delay. Sup-
pose that in the example, g1 is assigned with gate size 2, g2 is assigned with gate
size 5, g3 is assigned with gate size 1, g4 is assigned with gate size 1, and g5 is as-
signed with gate size 7. Recall that t (g) denotes the arrival time at the output of a
gate g and d(g) denotes the gate delay of g. C(g, s(g)) and R(g, s(g)) are the ca-
pacitance and resistance of gate g when it is assigned with gate size s(g), respec-
tively. In Fig. 2, g1 is the primary input gate. The arrival time at g1, i.e., t (g1),
is equal to the delay of g1, i.e., t (g1) = d(g1) = R(g1,2)(C(g2,5) + C(g3,1)).
For the gates which have the same fan-out gate, the arrival time at these gates is
equal to the maximum arrival time to guarantee the worst-case circuit performance.
For example, t (g2) = t (g3) = max{t (g1) + d(g2), t (g1) + d(g3)} = max{t (g1) +
R(g2,5)C(g4,1), t (g1) + R(g3,1)C(g4,1)}. t (g4) is equal to t (g2) plus the delay
of g4, i.e., t (g4) = t (g2) + d(g4) = t (g3) + d(g4) = t (g2) + R(g4,1)C(g5,7).

On the other hand, the circuit cost will be also impacted by gate size assignment.
Each gate g at size s(g) is associated with a cost w(s(g)). The cost of a set of gates
is defined as the sum of costs of all gates. The cost constraint W says that the sum of
costs of all gates in G needs to be less than or equal to W .
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Fig. 2 Illustration of gate delay
d and arrival time t

The circuit will be partitioned by levels. Initially, we would let level-1 gates spec-
ify all the primary input gates and let level-2 gates specify the gates immediately
downstream to level 1 gates. However, since a gate g can be reached through differ-
ent paths from primary input gates, it can belong to different levels according to the
above definition. Thus, for each gate, its level is defined as the minimum possible
level reachable from any primary input gate. In addition, for a gate g, if there exists a
path from g to any level-i gate g′, the level of g will be no greater than i, the level of
g′. This means that whenever a gate g′ is included into a level i, we also include all
the gates along any path to g′ to level i provided that they are not yet included in any
of the previous levels (level 1,2, . . . , i − 1). Denote by c the maximum number of
gates in any level. Our FPTAS needs the assumption that there are constant gates in
each level, i.e., c = O(1). Thus, it is said to approximate the restricted discrete gate
sizing.

It is helpful to look at an example to illustrate the concept of level. Refer to Fig. 1
where the levels for gates are shown. After g4 is classified as a level-2 gate, g5 would
be classified as a level-3 gate. However, g7 is also classified as a level-2 gate since
it connects to g1 which is a level-1 gate. Backtracking the graph from g7, g6 and g5
can be reached and they are not yet classified. Thus, they are also included in level
2. The backtracking stops when a gate with classified level is encountered. The total
backtracking time (summing up backtracking time over all nodes) takes O(|E|) =
O(n2) time which will be bounded by the FPTAS time. In summary, in Fig. 1, L1 =
{g1, g2}, L2 = {g3, g4, g5, g6, g7}, L3 = {g8, g9}, L4 = {g10}, and L5 = {g11, g12}. In
addition, c = 5 which is due to the level-2 gates.

The following notations will be used in our FPTAS design. Let T ∗ denote the
delay of the optimal gate sizing solution. Let T and T denote certain upper bound
and lower bound on T ∗, respectively. Various techniques can be used to obtain T and
T . For example, T can be obtained from always using the largest capacitance and the
largest resistance at any gate (even if they belong to different sizes), ignoring the cost
constraint. Similarly, T can be obtained from always using the smallest capacitance
and the smallest resistance at any gate, ignoring the cost constraint. T and T can
be certainly computed in linear time through evaluating the circuit delay in each
case. Note that the lower bound and the upper bound are not tight, however, they
make sense due to that the optimal solution, if any, must be in this range and can be
searched out. On the other hand, as our FPTAS is independent of T and T , it is not
important to design techniques which can generate tighter upper or lower bounds.

Some notations frequently used in this paper are summarized as follows.

• n: the total number of gates.
• m: the maximum number of gate sizes for any gate.
• c: the maximum number of gates in any level.
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• T ∗: delay of the optimal discrete gate sizing solution.
• T : a lower bound on T ∗.
• T : an upper bound on T ∗.
• t (g): the arrival time at the output of a gate g.
• s(g): the assigned gate size of gate g.
• d(g): the gate delay of g.
• Li : the set of gates in level i.

2.2 Problem formulation

Discrete Gate Sizing Problem Given a DAG G = (V , E), and a set S(g) of avail-
able gate sizes for gate g, to compute a gate size assignment at each gate in G from
the available gate sizes such that the arrival time at any primary output gate (longest
path delay) is minimized while the cost constraint W is satisfied.

Instead of enumerating all paths to obtain the longest path delay, the discrete gate
sizing problem is usually formulated to a mathematical programming problem as
follows (Hu et al. 2007).

min T

s.t.
∑

∀gi
w(s(gi)) ≤ W,

t(gi) ≤ T , ∀gi ∈ PO,

t (gi) + d(gj ) ≤ t (gj ), ∀gi ∈ fin(gj ),

d(gi) = R(gi, s(gi))
∑

∀gj ∈fout(gi )
C(gj , s(gj )),

d(gi) ≤ t (gi), ∀gi ∈ PI,
s(gi) ∈ S(gi), ∀gi.

(1)

It is clear that the delay of a gate depends on the gate size assignment on its imme-
diate downstream (fan-out) gates and the arrival time at a gate depends on the gate
assignments of all the gates along any path from primary input gates to the fan-out
gates of this gate.

3 The discrete gate sizing algorithm

3.1 Overview of the algorithm

Our FPTAS is motivated from Hu et al. (2009a, 2009b) and it works under the frame-
work of the scaling and rounding based FPTAS design (Hassin 1992; Ergun et al.
2002; Vazirani 2001). In contrast to discrete gate sizing problem, (Hu et al. 2009a,
2009b) consider different problems, namely, the minimum cost delay driven buffer-
ing problem and layer assignment problem. Although the new technique shares some
common features and flow with Hu et al. (2009a, 2009b), in appearance, there are
underlying difference between their technique and our technique. In particular, Hu
et al. (2009a, 2009b), can only handle tree topology while our discrete gate sizing
technique needs to handle DAG which is a larger class of graphs. Due to this, a level
based dynamic programming technique is proposed in this work.
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Under the framework of Hassin (1992), Ergun et al. (2002), Vazirani (2001)), the
algorithm first makes a guess on T ∗. Denote the guessed value by T . Subsequently,
check whether the guessed value T is a good guess, namely, whether it is sufficiently
close to (at most ε away from) the optimal cost T ∗. If T is a good guess, the cor-
responding discrete gate sizing solution will be returned as an approximate solution
which is at most ε away from the optimal solution. Otherwise, the other guess is
made. This process is repeated until a good guess is obtained.

There are two major algorithmic design issues with the above flow. First, since
the optimal solution is not known, how can we tell whether a solution is sufficiently
close to the optimal solution? Second, how can we effectively make the new guess to
reduce the total number guesses if the current guess is not good? Certainly, one should
utilize the information from the previous guesses in generating a possibly good new
guess.

For the first issue, a procedure called oracle is used to check whether a solution is
good. That is, the oracle can approximately decide whether T ∗ ≥ T for any positive
number T efficiently. Once we have the oracle in hand, the second issue can be han-
dled by efficient search using oracle. For example, one could perform a binary search
between the upper and lower bounds of T ∗ using the oracle. However, this kind of
technique cannot be used in designing the FPTAS since the number of iterations for
binary search depends on the initial bounds. If the range between them is unbounded,
the FPTAS will run in unbounded time. Thus, an efficient bound independent oracle
based search technique proposed in Ergun et al. (2002) is used in this paper.

3.2 Oracle construction

3.2.1 Level based dynamic programming

We begin with describing how to construct the oracle. The key part of the oracle
is a level based dynamic programming algorithm which can efficiently tell either
(1 + ε)T ≥ T ∗ or T < T ∗ for any T > 0. The efficiency is achieved by effectively
pruning redundant solutions to make the number of solutions polynomially bounded
during dynamic programming. By the proposed level based dynamic programming,
the following lemma can be reached.

Lemma 1 Given any T , ε > 0, the level based dynamic programming algorithm can
compute a solution with the delay at most (1+ ε)T , or report that there is no solution
which can have delay no greater than T , in O(nm3c · (n/ε)c)) time, where n is the
number of gates, m is the maximum number of gate sizes for any gate and the constant
c is the maximum number of gates per level.

Proof Let Vi denote the set of all the gates up to level i in G, and Vi+1 denote the set
of all the gates up to level i +1 in G. A gate sizing solution γ (Vi) refers to a gate size
assignment on gates in Vi+1 (but not Vi ). We call such a solution a level-i solution.
Given a level-i solution γ (Vi), to model the impact to the downstream gates, it is
characterized by

(Vi, t (g1), s(g1), t (g2), s(g2), . . . , t (gk), s(gk), s(gk+1), s(gk+2),

. . . , s(gl),w(Vi+1)), (2)
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where Li = {g1, g2, . . . , gk}, and Li+1 = {gk+1, gk+2, . . . , gl}. This means that for
any gate g ∈ Li , the solution is characterized by the arrival time t (g) at g when it is
assigned with the size of s(g) and its fan-out gates fout(g) are assigned with the sizes
of s(fout(g)). Thus, in a solution after processing a level, the gate size assignments
for all the gates in its next level are also determined. Further, the solution characteri-
zation includes the cumulative cost so far, which is also called the cost of the solution,
denoted by w(Vi+1). It is computed as the sum of costs for all the gates in Vi+1, i.e.,
w(Vi+1) = ∑

w(s(g)),∀g ∈ Vi+1. It can be easily seen that a solution is uniquely
characterized as in (2). Further, if there are multiple solutions having the same charac-
terization on Vi, t (g1), s(g1), t (g2), s(g2), . . . , t (gk), s(gk), s(gk+1), . . . , s(gl), only
one of them (with smallest cumulative cost w(Vi+1)) needs to be maintained in the
dynamic programming and all others are called redundant which can be pruned for
acceleration. Note that these solutions are gate sizing solutions on Vi , and the cu-
mulative cost is w(Vi+1), which is the total cost of the set of all gates up to level
i + 1.

The level based dynamic programming begins with the primary input gates,
i.e., L1. For each gate g in L1, for any size, the arrival time at the input of g is
always 0 since it is a primary input gate, and the arrival time at a primary input gate
is equal to its gate delay. For any solution of V1, the gate size assignment for both L1
and L2 gates are determined. The cumulative cost of the solution is w(V2) (but not
w(V1)) which can be easily computed by summing up the costs of all gates in L1 and
L2. Since there are at most m gate sizes for any gate and at most c gates per level,
there are at most O(m2c) possibilities on gate size assignment for the gates in the 2
levels. Thus, there are at most O(m2c) solutions for V1.

The level based dynamic programming then proceeds to the second level gates,
i.e., L2. For a solution γ1(V1) which already includes the gate size assignment on V2,
we grow it to incorporate the gate size assignment on L3. For this, all the possible
sizes of L3 are enumerated and a solution is generated per combination. Since there
are at most m gate sizes for any gate and there are at most c gates per level, there will
be at most mc new solutions generated from a solution γ1(V1). This is also the case for
other solutions γ2(V1), γ3(V1), . . . . Totally, there would be O(m2c · mc) = O(m3c)

level-2 solutions.
If this process is continued, the number of solutions would be exponential in terms

of the number of levels which is O(n). On the other hand, when we proceed to com-
pute the gate sizing solution on V2, there are at most O(mc) possibilities on gate size
assignment for the gates in L3. If we are able to polynomially bound the number of
possibilities on arrival times for all gates in L2, the number of solutions can be poly-
nomially bounded. This is due to the following fact. For two solutions with the same
gate size assignment of L2 and L3, and the same arrival time at every gate in L2, we
only need to pick the solution with smaller cumulative cost (in case of tie, arbitrarily
pick one) to propagate in dynamic programming since both solutions have the same
impact to the downstream gates except the cumulative cost. This motivates us to use
the classic rounding technique to bound the number of possibilities on the arrival time
for all gates in L2.

Given a solution, for each gate gi ∈ L2, round down its arrival time t (gi) to be
the nearest multiple of T ε/n, i.e., t (gi) = �t (gi)/(T ε/n)	 · T ε/n. Recall that T is
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the guessed circuit delay and we are only interested in whether there is a solution
with circuit delay (approximately) upper bounded by T . Thus, if there is any solution
with the arrival time at any gate larger than T , the solution will be pruned. Due to
this, at any gate, there can be at most n/ε distinct arrival times after rounding. Thus,
after processing the level-2 gates and the rounding procedure, there can be at most
O(m2c ·(n/ε)c) solutions since there are at most m2c distinct gate sizes for L2 and L3,
and (n/ε)c distinct arrival times for L2.

In this fashion, the level based dynamic programming proceeds level by level until
the last level is handled. In general, one can see that there are at most O(m2c) distinct
gate sizes and O((n/ε)c) distinct arrival times for any level. At each level, at most
O(m2c · (n/ε)c ·mc) solutions will be generated where only O(m2c · (n/ε)c) of them
are not redundant according to rounding. Note that updating cumulative cost can be
easily performed in O(c) time for each solution. The pruning can be implemented
using a multi-dimensional array where each entry links to a solution with different
gate sizes and rounded arrival times for a level. Locating an entry takes O(c) time.
When a new level-i solution is generated, find and compare its cost to the level-i
solution with the same gate sizes and arrival times at all level-i gates. If there is
no such solution, link the solution to the entry. Otherwise, compare the cost to the
cost of the existing solution. If its value is larger, prune the new solution. Otherwise,
replace the solution with the new solution. Thus, the time complexity can be bounded
as O(c · m2c · (n/ε)c · mc) per level and O(nm3c · (n/ε)c) for all levels, assuming
that O(c) = O(1). Note that if T is too small, it is possible that no solution can be
generated at any primary output gate (e.g., at a level, all the solutions have delay
greater than T and are pruned).

Recall that the delay of a circuit refers to the maximum arrival time at the output
of any primary output gate. Due to the rounding procedure, the obtained circuit delay
is not accurate. First, it is a lower bound on the actual circuit delay since only down-
rounding is performed. Thus, if the dynamic programming technique cannot find a
solution which has delay no greater than T , there is no solution which can have
the delay no greater than T with unrounded delay at each gate. Second, since the
rounding error in delay for each gate is bounded by T ε/n which is our rounding
factor, together with the fact that there are at most n gates along any path between a
primary input gate and a primary output gate, the rounding error for the whole circuit
is bounded by T ε. This means that if a solution has the circuit delay of T , its actual
circuit delay without rounding is bounded by (1 + ε)T . �

It is helpful to see an example to illustrate the pruning process. Refer to Fig. 3
where two solutions are presented. In Fig. 3, [a, b] to the right of a gate g means
that its rounded arrival time is a and its gate size is b. The two solutions are level-3
solutions and their gate size assignments at every level-3 gate are the same. Suppose
that after rounding, both solutions have the same arrival time at every level-3 gate.
Since the second solution has larger cumulative cost 14, it will be pruned.

3.2.2 Oracle construction

The oracle will decide whether either (1 + ε)T ≥ T ∗ or T < T ∗ for any T > 0. For
this, the oracle calls the level based dynamic programming with the input T and ε.
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Fig. 3 An example of pruning
where solution 2 is redundant
with respect to solution 1

If there is a solution returned, it means that a solution with the circuit delay at most
(1 + ε)T has been obtained. Thus, T ∗ ≤ (1 + ε)T . Otherwise, it means that there is
no solution which can have the circuit delay T . In the first case, the oracle will return
TRUE. In the second case, the oracle will return FALSE.

3.3 The FPTAS

FPTAS works as searching for the best delay T within the lower bound T and the
upper bound T in an iterative manner. None of binary search and logarithmic scale
binary search within these bounds can terminate in time independent of the bounds
(Ergun et al. 2002; Hu et al. 2009a). If the range between them is unbounded, the
time complexity of FPTAS will be unbounded. Thus, a technique proposed in Ergun
et al. (2002), which is also used in Hu et al. (2009a, 2009b), is adopted to tackle this
difficulty. By the proposed FPTAS, we can reach the following theorem.

Theorem 2 The discrete gate sizing problem can be approximated within a factor of
(1 + ε) in O(n1+cm3c/εc) time for any 0 < ε < 1 and in O(n1+cm3c) time for any
ε ≥ 1, where n is the number of gates, m is the maximum number of gate sizes for
any gate, and the constant c is the maximum number of gates per level.

Proof The idea of the searching technique is that instead of sticking to ε during
optimization, adapting ε can significantly improve the runtime. This is due to the
fact that the time complexity of the dynamic programming algorithm is inversely
proportional to ε. If one sets ε as a geometrically decreasing sequence leading to
ε, the total runtime will be bounded by the last run, independent of the number of
iterations and the initial bounds.

Ergun et al. (2002) shows that this is possible. The oracle is called iteratively. In

i-th iteration, set εi =
√

Ti/Ti − 1 and Ti =
√

TiTi/(1 + εi). Use Ti and εi as the

input to the oracle. Depending on the binary result of the oracle, either Ti+1 will be
updated to (1 + ε)Ti (when the oracle returns TRUE) or Ti+1 will be updated to Ti
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(when the oracle returns FALSE). This process is iterated until Ti/Ti < 2. During
iterations, the ratio Ti/Ti will be progressively reduced as Ti+1/Ti+1 = (Ti/Ti)

3/4

(Ergun et al. 2002). Note that the total runtime for dynamic programming is in the
form of O(

∑
i nm3c · (n/εi)

c)) = O(nm3cnc · ∑
i (1/εi)

c)). It is shown in Ergun et

al. (2002) that 1/εi < (2 + √
2)

√
Ti/Ti . As a result, the runtime bound becomes

O(nm3cnc · ∑
i (

√
Ti/Ti)

c). Since c ≥ 1, O(nm3cnc · ∑
i (

√
Ti/Ti)

c) = O(nm3cnc ·
(
∑

i

√
Ti/Ti)

c). Together with the fact that
∑

i

√
Ti/Ti = O(1) when setting Ti and

εi as above Ergun et al. (2002), the total time will be bounded by O(nm3cnc ·O(1)c).
At some point, Ti/Ti < 2. The above iterative procedure terminates. Similar to

Hassin (1992), Hu et al. (2009a, 2009b), the level based dynamic programming is ap-
plied using the following setting. For each gate, its arrival time will be down rounded

Algorithm 1 Level based dynamic programming
DP(Tr, T , ε)
// there are l levels in the combinational circuit
i ← 1
while i ≤ l do

for each level-(i − 1) solution do
generate level-i solutions by enumerating all gate size
assignments of level-i and level-(i + 1) gates

end for
for each level-i solution γ do

if the cost of γ is > W then
remove γ

else
for each level-i gate g do

if the arrival time at g is > T then
remove γ

else
round it down to the nearest multiple of Trε/n

end if
end for

end if
if cost of γ is larger than cost of the level-i solution
with the same arrival time at every level-i gate then

remove γ

else
replace the solution with γ

end if
end for
i ← i + 1

end while
return the best delay solution or no feasible solution
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Algorithm 2 The oracle
ORACLE(T , ε)
if DP(T ,T , ε) returns a solution then

return TRUE
else

return FALSE
end if

Algorithm 3 The fully polynomial time approximation scheme for discrete gate siz-
ing problem

FPTAS(T ,T , ε)
while T /T > 2 do

ε′ ←
√

T /T − 1

T ←
√

T T /(1 + ε′)
if ORACLE(T , ε′) = TRUE then

T ← T (1 + ε′)
else

T ← T

end if
end while
return DP(T ,T , ε)

to the nearest multiple of T ε/n where ε is the target approximation ratio ε. If its
arrival time is greater than Ti , it will be pruned. Thus, at any gate, there will be at
most 2n/ε distinct arrival times. In any level, there are at most (2n/ε)c possibilities
of arrival times. After the whole circuit is processed, pick the smallest delay Ts with
the cost no greater than the cost constraint W to be our solution. Since arrival time is
only down-rounded, Ts ≤ T ∗. Rounding the arrival time of this gate sizing solution
back, the delay is at most (1 + ε)Ts ≤ (1 + ε)T ∗. This single run of dynamic pro-
gramming takes O(nm3c · (2n/ε)c)) time since the only difference from Lemma 1 is
that we can have O((2n/ε)c) possible arrival time combinations at any level instead
of O((n/ε)c) possibilities. Together with the runtime for the iterative oracle calls,
the total runtime is bounded by O(nm3cnc · O(1)c + nm3c · (2n/ε)c). This gives an
FPTAS when c is a constant. �

The pseudo-code for the algorithm is shown in Algorithms 1, 2 and 3.

4 Conclusion

Discrete gate sizing is a critical optimization due to its effectiveness in obtaining
various delay and power trade-off in a combinational circuit. However, all of the
existing techniques are heuristics without any theoretical guarantee on the quality of



J Comb Optim

their gate sizing solutions. This paper designs the first FPTAS for the discrete gate
sizing problem. Our algorithm can obtain an approximation within a factor of (1 + ε)

in O(n1+cm3c/εc) time for any 0 < ε < 1 and in O(n1+cm3c) time for any ε ≥ 1,
where n is the number of gates, the constant c is the maximum number of gates per
level, and m is the maximum number of gate sizes for any gate. The FPTAS needs
the assumption that c is a constant. An interesting future work would be to design an
FPTAS with a relaxed assumption.
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