1. An LTI filter is described by
 \[y[n] = x[n] - x[n-2] \]

 Determine the frequency response, \(\mathcal{H}(\hat{\omega}) \).

 \[
 \mathcal{H}(\hat{\omega}) = \sum_{k=0}^{M} b_k \exp^{-j\hat{\omega}k} \\
 = 1 - \exp^{-2j\hat{\omega}} \\
 = 2 \exp^{j(\pi/2 - \hat{\omega})} \sin \hat{\omega}
 \]

2. If the input is \(x[n] = 2 + \cos(0.25\pi n + \pi/4) \), find \(y[n] \).

 \[
 y[n] = \mathcal{H}(\hat{\omega})x[n] \\
 = 2\mathcal{H}(\hat{\omega} = 0) + |\mathcal{H}(\hat{\omega} = \pi/4)| \cos(\pi n/4 + \pi/4 + \angle\mathcal{H}(\hat{\omega} = \pi/4)) \\
 = 0 + 2 \sin(\pi/4) \cos(\pi n/4 + \pi/2) \\
 = \frac{2}{\sqrt{2}} \cos(\pi n/4 + \pi/2)
 \]