1. Given a rectangular waveguide air-filled with dimensions $a=2.29\text{cm}$, $b=1.02\text{cm}$, what operating frequency would be chosen if we wished to operate at the average of the two lowest propagating (cut-off) frequencies? (5 points) Solution:

$$f_c = \frac{1}{2\sqrt{\mu_0 \epsilon_0}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} = \frac{3 \times 10^8}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Therefore:

$TE_{10} = 6.55 \text{GHz}$

$TE_{20} = 13.10 \text{GHz}$

$TE_{01} = 14.71 \text{GHz}$

So, average of two lowest is: $(6.55 + 13.10)/2 = 9.83 \text{GHz}$

2. What is the lowest non-zero frequency that can be propagated in the earth-ionosphere waveguide (assumed to be a parallel-plate waveguide), assuming the ionosphere is 50 km from the surface of the earth? Your answer must include the mode. (5 points)

Solution:

The TM_0 (or TEM) mode has a cutoff frequency of 0Hz.

For the TE or TM mode,

$$f_c = \frac{m}{2a\sqrt{\mu_0 \epsilon_0}}$$

Set $m = 1$. Then:

$$f_c = \frac{1}{2(50 \times 10^3 m)} 3 \times 10^8 \text{[m/s]}$$

$$= \frac{3}{100} \times 10^5$$

$$= 3 kHz$$

Therefore, the lowest non-zero propagated frequency is 3kHz and is the TE_1 or TM_1 mode.