Consider large T (above melting pt.)

1. Pick a state of system (above melting)
2. Generate T_c
3. Calculate $E(a + \delta a)$
4) if $E(a+\Delta a) \leq E(a)$, then accept Δa

if $E(a+\Delta a) - E(a) > 0$, accept with a probability $P = e^{-\Delta E/kT}$ where T chosen as $E(a)$

Metropolis algorithm
Note: The lower the temperature, less likely an uphill step is taken! $P \sim e^{-\Delta E/T}$

Generalizing: One must provide:
1) A description of all possible system configurations, i.e., given ξ, can you find $E(\xi)$?

2) A generator of random changes in the "state" or configuration, these changes are presented as options to the system, i.e., must be able to provide ξ.
3) An objective (cost) function, analogous to Energy, whose minimization is the goal!

4) A control parameter, analogous to T and an "annealing" schedule which tells how T is lowered from high to low; e.g., after how many random changes in
configuration is each 19 6 downward step in \(T \) taken, and how large is \(\Delta T \)?

An illustration: The famous Traveling salesman problem.

1) Configuration. Cities are numbered 1, 2, 3... \(N \). "Energy" permutation of visitation is a configuration.
2) Rearrangements.

A **efficient** set of moves could be:

a) A section of path is removed and replaced by same cities in **opposite** order.

1 2 3 4 5 6 ...

1 2 5 4 3 6 ...
b) a section of path is removed and replaced between two cities on another, randomly chosen, section.