Chapter 14 LAN Systems

- Ethernet (CSMA/CD)
 - ALOHA
 - Slotted ALOHA
 - CSMA
 - CSMA/CD
- Token Ring /FDDI
- Fiber Channel
 - Fiber Channel Protocol Architecture

From Slotted ALOHA to CSMA

- Slotted ALOHA
 - Time in uniform slots equal to frame transmission time
 - Need central clock (or other sync mechanism)
 - Transmission begins at slot boundary
 - Max utilization 37%
- CSMA: take advantage of small (compare to transmission time) propagation delay
 - All stations know that a transmission has started almost immediately in LAN
 - First listen for clear medium (carrier sense)
 - If medium idle, transmit
 - Collision occurs only if two stations start at the same instant, collision
 - Wait reasonable time (round trip plus ACK contention, No ACK then retransmit
 - Max utilization depends on propagation time (medium length) and frame length
 - Longer frame and shorter propagation gives better utilization

Ethernet (CSMA/CD)

- Carriers Sense Multiple Access with Collision Detection
- IEEE 802.3 Medium Access Control Development
 - Random Access & Contention
 - Stations access medium randomly, content for time on medium
 - ALOHA – Precursor of CSMA/CD: Packet Radio
 - When sender station has frame, it sends
 - Sender station listens (for max round trip time plus small increment)
 - If ACK, fine. If not, retransmit
 - If no ACK after repeated transmissions, give up
 - Receiver station frame check sequence (as in HDLC)
 - If frame OK and address matches receiver, send ACK
 - Frame may be damaged by noise or by another station transmitting at the same time (collision)
 - Any overlap of frames causes collision
 - Max utilization 18%, not desirable -> Slotted ALOHA

- CSMA: collision occupies medium for duration of transmission, waste of capacity
 - If medium is idle, transmit
 - If busy, listen for idle then transmit immediately
 - If two stations are waiting, collision
- CSMA/CD: stations listening whilst transmitting
 - If medium idle, transmit
 - If busy, listen for idle, then transmit
 - If collision detected, jam then cease transmission
 - After jam, wait random time then start again
 - Binary exponential back off
Collision Detection

- On baseband bus, collision produces much higher signal voltage than single signal
 - Collision detected if cable signal greater than single station signal
- Signal attenuates over distance
- Limit distance to 500m (10Base5) or 200m (10Base2)
- For twisted pair star-topology activity on more than one port is collision
 - Special collision presence signal generated

Ethernet

- 10Mbps -> 100Mbps
 -> Gigabit Ethernet
- Gigabit Ethernet
 - Compatible to 10/100
 - Enhancement of CSMA/CD
 - Carrier extension: At least 4096 bit-times long (512 for 10/100)
 - Frame bursting
 - With switching hub, no need for the enhancement

Token Ring

- MAC protocol
 - Small frame (token) circulates when idle
 - Station waits for token
 - Changes one bit in token to make it SOF for data frame
 - Append rest of data frame
 - Frame makes round trip and is absorbed by transmitting station
 - Station then inserts new token
 - when transmission has finished and
 - With/without the leading edge of returning frame arrives (immediate release/delayed release)

FDDI (Fiber Distributed Data Interface) MAC Protocol

- As for 802.5 except:
 - Station seizes token by aborting token transmission
 - Once token captured, one or more data frames transmitted
 - New token released as soon as transmission finished (early token release in 802.5)
Fiber Channel - Background

- **I/O channel**
 - Direct point to point or multipoint comms link
 - Hardware based
 - High Speed
 - Very short distance
 - User data moved from source buffer to destination buffer

- **Network connection**
 - Interconnected access points
 - Software based protocol
 - Flow control, error detection & recovery
 - End systems connections

Fiber Channel

- **Best of both technologies**
 - Channel oriented
 - Data type qualifiers for routing frame payload
 - Link level constructs associated with I/O ops
 - Protocol interface specifications to support existing I/O architectures
 - e.g. SCSI
 - Network oriented
 - Full multiplexing between multiple destinations
 - Peer to peer connectivity
 - Internetworking to other connection technologies

Fiber Channel Elements

- End systems - Nodes
- Switched elements - the network or fabric
- Communication across point to point links

Fiber Channel Network

Fiber Channel Protocol Architecture

- **FC-0 Physical Media**
 - Optical fiber for long distance
 - coaxial cable for high speed short distance
 - STP for lower speed short distance

- **FC-1 Transmission Protocol**
 - 8B/10B signal encoding

- **FC-2 Framing Protocol**
 - Topologies
 - Framing formats
 - Flow and error control
 - Sequences and exchanges (logical grouping of frames)

- **FC-3 Common Services**
 - Including multicasting

- **FC-4 Mapping**
 - Mapping of channel and network services onto fiber channel
 - e.g. IEEE 802, ATM, IP, SCSI