Ongoing List of Topics:

- URL: http://www.ece.mtu.edu/faculty/bamork/EE5223/index.htm
- Term Project - last few proj/teams being firmed up and getting moving.
 - Follow timeline, see posting on web page
- Problem 10.1 - completed Tues 5pm.
- Will post next homework later today or Thurs
- Protection of Shunt Capacitor Banks (print out “Cap Bank Prot” at Week 12)
 - Basic application, reason for using shunt cap banks
 - Characteristics of individual “cans”
 - Cap bank configurations - delta, wye, sectionalized (or “double”) wye
- Basic Methods of protection
 - Neutral overcurrent
 - Voltage differential
 - Voltage balance (double wye)
 - Current balance (ungrounded double wye)
\[|Z_{\text{in}}| \]

\[R_{\text{dc}} - F \]

high-order R.L.C.
$0.10 \text{ W/KVAR} \left(200 \text{ KVAR}\right) = 20\text{ W}$

$\frac{V^2}{R_{cond}} = 20\text{ W}$
\[\frac{87V}{(E_B - K E_C)} = 0 \]
Fuseless

C increases when elements fail.
Typical: 900V
Design: Operates at 400-800V Steady-state.

IEEE: \(\leq 50 \text{ Volts} \) (\(V_{ln} \)) within 5 mins.

\(P = \frac{V_{in}^2}{R_{diss}} \)

\(R_{diss} \Rightarrow 0.1 \text{ W/KVar} \)

\(\eta = RC \)
Capacitor Bank Design and Protection
Externally Fused Configuration Only

Bruce Mork
Michigan Tech University - Teaching Example

Bank Specification:
Grounded-Wye Bank
L-L System Voltage: 138 kV
Size of Bank: 80 MVAR

Can Specs:
Voltage: 13.28 kV
Rating: 200 kVAR
Loss: 0.1 WkVAR
Capacitance: 3,008 uFarads
Impedance: 881.79 Ohms
Current: 15.06 Amps
Diss Ohms: 8.818 MOhms

Configuration:

Total No. Cans:	400.00	414	Cans
No. Cans/Phase:	133.33	138	Cans/Ph
Series Groups/Phase:	6.00	6	
Parallel Cans/Group:	22.22	23	
Impedance/Group:	36.34 Ohms		
Impedance/Phase:	230.03 Ohms		
Diss Ohms/Phase:	2.300 MOhms		
Discharge RC Time Constant:	26.53 Secs		

Performance:

System Voltage, pu:	0.95	1.00	1.05
Total MVAR	74.72	82.79	91.27
Line Current, Amps:	329.04	346.36	363.68
Voltage/Group, kV:	12.515	13.279	13.943
Voltage/Group, pu:	0.950	1.000	1.050
Losses, kW:	7.472	8.279	9.127 kW
Dischg Time to 50%:	203.43	204.79	206.08 Seconds

Group Voltages:

VT Ratio:	kV	V	
1 Blown Fuses	13.279	120	
This Group:	13.089	13.778	14.467 kV
0.986	1.038	1.089 Per Unit	
118.29	124.51	130.74 VT Sec Volts	
Other Groups:	12.520	13.179	13.838 kV
0.943	0.992	1.042 Per Unit	
113.14	119.10	125.05 VT Sec Volts	

3 Blown Fuses	14.154	14.898	15.543 kV
This Group:	1.066	1.122	1.178 Per Unit
127.90	134.63	141.37 VT Sec Volts	
Other Groups:	12.307	12.955	13.603 kV
0.927	0.976	1.024 Per Unit	
111.22	117.07	122.93 VT Sec Volts	

4 Blown Fuses	14.753	15.530	16.306 kV
This Group:	1.111	1.169	1.228 Per Unit
133.32	140.34	147.36 VT Sec Volts	
Other Groups:	12.187	12.829	13.470 kV
0.918	0.966	1.014 Per Unit	
110.14	115.93	121.73 VT Sec Volts	