Topics for Today:

- Announcements
 - Help session hrs: 4:05-5:55pm W,F - EERC 123
 - Office: EERC 614. Phone: 906.487.2857
 - Recommended problems from Ch.3, solutions posted

- Transformers and circuits w/ transformers
 - Paralleling of transformers
 - Proportioning of MVA flow for unequal MVA size, unlike impedances
 - Circuit calculations for above cases
 - Design and operations issues
 - Phase shifting transformers
 - Remaining topics will be covered again in context of system operation & analysis, i.e. Chapters 7 and 8. We can introduce main concepts here:
 - Per phase Pi-equivalent for off-nominal turns ratio, phase shifts, etc.
 - Incorporation in system admittance matrix for short-circuit and load flow
Synchronous Machines - Chapter 3

- Recommended problems & solns for Ch.3 are posted.
- Phasor diagrams - unity, lag, lead
- Salient rotor machines - calculation with Xd and Xq.
- Calculation Example(s)
- P & Q flows thru transmission lines
- More on admittance matrix [Y] construction
Screw moves into page.
ABB POWER T & D COMPANY, INC.

THREE PHASE 138000 OGD. Y VOLS 69000 OGD. Y VOLS 65° C. AVG. RISE 50000/36666 KVA 50000/36666 KVA

TRANSFORMER CLASS DA/FA

GALLONS OIL TRANS. TANK

LOAD TAP CHANGER COMPARTMENT

SERIAL

RNP-11061 7/95

POLE SEG. IMPEDANCE 4.69 % AT 50000 KVA, 138000 TO 69000 VOLTS

ZERO SEG. IMPEDANCE 3.27 % AT 10311 KVA, 138000 TO 69000 VOLTS

ZERO SEG. IMPEDANCE 2.83 % AT 10311 KVA, 69000 TO 69000 VOLTS

FULL WAVE IMPULSE TEST LEVEL

H-WDG 650 KV, X-WDG 350 KV

HOXO NEUT. 110 KV, TERTIARY 110 KV

APPROX. WEIGHT IN LBS. CORE AND COILS

102200 CAS 88100 MUL 127200 TOTAL 317500

CAUTION: DO NOT ATTEMPT TO HANDLE, INSTALL, USE OR SERVICE THIS TRANSFORMER BEFORE READING INSTRUCTION BOOK XLL7952-12. TO DO SO MAY LEAD TO BODILY INJURY OR PROPERTY DAMAGE OR BOTH.

H-WINDING

LIGHTNING ARRESTER (3-TOTAL)

2000% MOW (1-TOTAL)

TERTIARY VOLTAGE

REGULATING WINDING

PHASE A

PHASE B

PHASE C

X-WINDING

CONNECTIONS

WINDING VOLS MAX. DE-ENERGIZED TAP CHANGER CONNECTS POSITION LOAD TAP CHANGER

HIGH VOLTAGE GRID. WYE 138000 16 4 4 4 A

LOW VOLTAGE GRID. WYE 5000 16 12 12 12 A

REPAIRED IN ST. LOUIS MO. U.S.A.

NP# XLL7952-10 SUB A
Admittance Approaches

\[
\begin{pmatrix}
\bar{y}_{11} & \bar{y}_{12} \\
\bar{y}_{21} & \bar{y}_{22}
\end{pmatrix}
\begin{pmatrix}
\bar{v}_1 \\
\bar{v}_2
\end{pmatrix}
=
\begin{pmatrix}
\bar{I}_1 \\
\bar{I}_2
\end{pmatrix}
\]

injected!
\[A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \]

\[A^2 = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 5 & * & * \\ 5 & * & * \\ * & * & * \end{bmatrix} \]
\[\bar{y}_{21} = \bar{y}_{12}^{-1} \]

\[\bar{y}_{11} = \frac{\bar{I}_1}{\bar{V}_1} \cdot \bar{V}_2 = 0 \]

\[\bar{y}_{12} = \bar{y}_{21} = \frac{\bar{I}_1}{\bar{V}_1} \cdot \bar{V}_2 = 0 \]
2-port theory

- H param (electronics)
- ABCD params
- Admittance Matrix
\[
\begin{bmatrix}
-\bar{y}_{21} & \bar{y}_{12} \\
\bar{y}_{21} & \bar{y}_{22}
\end{bmatrix}
\begin{bmatrix}
\bar{I}_1 \\
\bar{I}_2
\end{bmatrix} =
\begin{bmatrix}
\bar{I}_{10} \\
\bar{I}_{20}
\end{bmatrix}
\]
Tap Changing XFMRs - Variations (p.u. representations)

From Bus

\[y_{sc} \]

\((R+jX) \)

\[y_{sc} \]

C: 1

\[y_{sc} \]

To Bus

\[\frac{1}{R+jX} \]

- \(y_{sc} \) is off-nominal turns ratio. In general, \(C \) is complex.
- \(C \) is real for LTC.
- \(C \) is complex for PS.
- If \(|C| \neq 1 \) then magnitude change.
- If \(C \) is complex, phase shift.

Michigan Tech Instructor: Bruce Mork Phone (906) 487-2857 Email: bamork@mtu.edu