Topics for Today:

• Announcements
 • Detailed term project outlines (i.e. Table of Contents + List of references
 • Software: you can apply for ATP/ATPDraw license, verify licensing when you receive it by e-mail, and we will mail you the install CD.
 • ASPEN software - remote.mtu.edu
 • Office hrs: EERC 123, WF 4-6pm. Instructor’s office: EERC 614
 • Recommended problems & all solutions: Ch.7 solns posted.

• Chapter 7 - Network Equations, Admittance Approaches
 • How’s your linear algebra? Time to make use of it...
 • Basic strategy for building up [Y] for whole network
 • Quick recap of xfmrs and lines.
 • Generators
 • Example of building [Y] for 4-bus system.
 • Network Reduction (Kron Reduction)
 • Solution of matrix equations (system of linear equations)
 • Upcoming homework - intro to Matlab, matrices, equations.
- Spreadsheet
- ASPEN
 - LF
 - SC
- phaser
- Arc Flash
- Relay Coordination
- CYME - Optimal LF
- ATP
 - Line Constants
 - Time-domain
- Feedback control
 - Relay Prot
- Matlab - Simulink
 - Sim Power
Close look at $z = a + j\beta$

$$y = \sqrt{2y} = \sqrt{(1.2 + j0.6) 0.2 \text{ mi}} = \sqrt{1.713 \text{ m/s/mi}}$$

$$= \frac{0.0033 \text{ m/s/mi}}{0.00212 \text{ rad/mi}}$$

$$= \frac{0.0034 \text{ nper/mi}}{0.00212 \text{ rad/mi}}$$

Tell us how much attenuation/mi

For 2.56 mi:

$$\text{Att} = 0.00034 \text{ per mi} (2.56 \text{ mi})$$

$$= 0.0085 \text{ or 8.5%}$$

Very high, yet assume more lossless?
\[Z_c = \sqrt{\frac{Z}{3}} \implies \text{Real for lossless.} \]
\[\approx \frac{300 \Omega}{(250-400 \Omega)} \approx 70-80 \Omega \text{ (cables)} \]

\[Z_c = \sqrt{\frac{R+jXL}{jBC}} \]

\[\rightarrow \]

\[\uparrow \]
Reflections

Voltage Reflection Coefficient:
\[\frac{V_R^-}{V_R^+} = \frac{Z_a - Z_c}{Z_a + Z_c} = P_R \]
\[\frac{Z_s - Z_c}{Z_s + Z_c} = P_s \]

Current Reflection Coefficient
\[\frac{i_R^-}{i_R^+} = -\frac{V_R^-}{V_R^+} = -P_R \]
The diagram shows an electrical circuit with a switch labeled "close switch." The time constant $T = 0.016\,s$ is noted, and a waveform indicating the current $I = \text{?}$ is also depicted.
\[
\begin{bmatrix} Z_B \end{bmatrix} = \begin{bmatrix} Y_B \end{bmatrix}^{-1}
\]

\[
\Rightarrow
\]

treat as off-nominal turns ratio.

\[
\text{still only need modify}
\]

\[
\text{y55} \quad \text{y57} \quad \text{y75} \quad \text{y77}
\]
Phase Shift XFMRS (Fig. 2.22)

Read §2.9!
→ \[Y_{Bus} \]

Building by inspection:

\[
\begin{bmatrix}
1 & -\frac{1}{2} & -\frac{1}{3} & -\frac{1}{4} \\
-\frac{1}{2} & 1 & -\frac{1}{3} & -\frac{1}{4} \\
-\frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{4} \\
-\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
y_{23} & y_{24} \\
y_{33} & y_{34} \\
y_{43} & y_{44} \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-\frac{1}{3} - y_{34} & -y_{34} \\
-\frac{1}{4} - y_{44} & -y_{44} \\
\end{bmatrix}
\]

From KCL:

\[
\sum I_s \text{ in } = 0
\]
\[
y_{33} = y_{33} + y_{3-4} \\
y_{44} = y_{44} + y_{4-3} \\
y_{34} = y_{34} - y_{3+4} \\
y_{43} = y_{43} - y_{4+3}
\]

\[
y_{3-4} = y_{4-3} \text{ if bilateral.}
\]

FACTS -
- Non-bilateral: \(y_{mn} \neq y_{nm}\)

EX:
- UPFC - \(P+Q\)
- SVC - \(S\) and \(Q\)
- P.S. Transformer
Four Cases

Next:

\[
\begin{bmatrix}
 y_0 & y_{12} \\
 y_0 & y_{12}
\end{bmatrix}
\]
Basis Approach: Develop π-Equiv and handle just like T-Line.

One-Line:

\[
\begin{align*}
&1 \quad \frac{a:1}{35} \quad 2 \\
\end{align*}
\]

per-unit

per-phase

\[
\begin{align*}
&1 \quad \frac{a:2}{\cos}\quad \frac{\text{REF}}{\text{REF}}
\end{align*}
\]

Top-Changers

- LTC's
- Phase-Shift

\[
\begin{align*}
&\text{Nominal} \quad \text{Turns} \quad \text{Ratio} \\
&\pm \text{Adjustment} \quad \text{in phase angle} \quad (PS) \quad \text{or Volt mag} \quad (LTC)
\end{align*}
\]
Tap Changing XFMRS - Variations (p.u. representations)

\[y_{sc} = \frac{1}{R + jX} \]

1. \(C \) is off-nominal turns ratio. In general, \(C \) is complex.
2. \(C \) is real for LTC.
3. \(C \) is complex for PS.
4. If \(|C| \neq 1 \) then magnitude change.
5. If \(C \) is complex, phase shift.

Instructor: Bruce Mork Phone (906) 487-2857 Email: bamork@mtu.edu
TAP-CHANGERS

On One-Line Diags:

Conceptually:

In per unit, nominal transformation "disappears"
Generically, we can describe this as a 2-node \([Y]\) as

\[
\begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
\]

where

\[
\frac{V_1}{V_2} = \frac{I_1}{I_2}
\]

\[
\begin{bmatrix}
\frac{V_1}{V_2}
\end{bmatrix}
= \begin{bmatrix}
\frac{I_1}{I_2}
\end{bmatrix}
\]
Standard Approach:

\[
\begin{bmatrix}
 y_{11} & y_{12} \\
 y_{21} & y_{22}
\end{bmatrix}
\begin{bmatrix}
 V_1 \\
 V_2
\end{bmatrix}
= \begin{bmatrix}
 I_1 \\
 I_2
\end{bmatrix}
\]

Goal:

\[
y_{11} = y_{SER} + y_{SH1} \\
y_{12} = -y_{SER} \\
y_{21} = -y_{SER} \\
y_{22} = y_{SER} + y_{SH2}
\]
Strategically using shorts, we can isolate on the values of \([Y]\).

\[
y_{11} = \frac{\bar{I}_1}{\bar{V}_1}, \quad \bar{V}_2 = 0
\]

\[
= \frac{1}{Z_{\text{EQ}}} = Y_{\text{EQ}} = \frac{-\bar{I}_2}{\bar{V}_2}, \quad \bar{V}_1 = 0
\]

\[
= \frac{1}{Z_{\text{EQ}}/|C_1|^2} = |C_1|^2 Y_{\text{EQ}}
\]
\[\vec{I}_1 = -\frac{c \vec{V}_2}{2 \varepsilon_0} \quad \vec{I}_2 = -\vec{I}_1 \times \mathbf{c}^* = - \left[\frac{c \vec{V}_2}{2 \varepsilon_0} \right] \mathbf{c}^* \]

Note: \[\frac{\vec{I}_2}{\vec{I}_1} = \mathbf{c}^* \]

\[\vec{I}_2 = \frac{|c| \vec{V}_2}{2 \varepsilon_0} \]
\[y_{12} = \left. \frac{\tilde{I}_1}{\tilde{V}_2} \right|_{\tilde{V}_1 = 0} = -\frac{c}{\tilde{V}_2/\tilde{Z}_{eq}} = -cY_{eq} \]

\[y_{21} = \left. -\frac{\tilde{I}_2}{\tilde{V}_1} \right|_{\tilde{V}_2 = 0} = -\frac{c*\tilde{I}_2}{\tilde{V}_1} = -c*Y_{eq} \]

\[S_{in} = \tilde{V}_1 \tilde{I}_1^* = \tilde{V}_2 \tilde{I}_2^* = S_{out} \]

Note: Ideal XFRH, by definition, has "C" is Voltage ratio.
\[C = \frac{\tilde{V}_1}{\tilde{V}_2} \Rightarrow \frac{\tilde{I}_2^*}{\tilde{I}_1^*} = c \]
If we "reverse engineer" our network, then \([Y]\) into an equivalent 2-bus network, then:

\[
\begin{align*}
I_1 &= C_{\text{YEQ}} V - Y_{\text{EQ}} (1 - c) \cdot V \\
V_1 &= Y_{\text{EQ}} (1 - c) \cdot V
\end{align*}
\]
Observations:

- LTC (TCUL) has a c that is real.
 \[\text{Transfer Admittances} \]
 \[C \cdot Y_{\text{eq}} = C \cdot Y_{\text{eq}} \]
 \[\Rightarrow \text{Bilateral}, \quad (y_{12} = y_{21}) \]

- Phase-Shifter (PS) has complex c.
 \[\text{Transfer admittances} \]
 \[C \cdot Y_{\text{eq}} \neq C \cdot Y_{\text{eq}} \]
 \[y_{12} \neq y_{21} \]
 \[\text{Not Bilateral.} \quad \text{[Y] not symm. about main diag.} \]
Transformer LTC's in the CDF File Format

Tap and impedance location specified in first two entries in branch data section.
- entry 1 is bus non-unity tap is connected to
- entry 2 is bus device impedance is connected to

Complex turns ratio due to phase shifting transformer split to two entries
- entry 15 is transformer final turns ratio
- entry 16 is transformer (phase shifter) final angle

Examples:

Example 1:

<table>
<thead>
<tr>
<th>Entry:</th>
<th>1</th>
<th>2</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>.975</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th>Entry:</th>
<th>1</th>
<th>2</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>
Ckt 1

Ckt 2, inductive coupling!

R1, jX1

R2, jX2

B = 5/MI
Mutual Inductance

\[\vec{E}_1 \rightarrow \vec{A} \rightarrow \vec{E}_2 \rightarrow \vec{B} \rightarrow \vec{E}_1' \]

\[\vec{H}_1 \rightarrow \vec{B} \rightarrow \vec{H}_2 \rightarrow \vec{A} \rightarrow \vec{H}_1' \]

END VIEW
MUTUAL INDUCTANCE

See also handout on Basic Magnetic Circuits

Fundamental definition of inductance: \(L = \frac{\Phi}{i} = \frac{N\Phi}{i} \)

Self-Inductance

\(L_{11} = \frac{N_1 \phi_{11}}{i_1} = \frac{\phi_{11}}{i_1} = \frac{N_1^2}{R} \)

Mutual Inductance

\(L_{12} = \frac{N_1 \phi_{12}}{i_2} = \frac{\phi_{12}}{i_2} = \frac{N_1 N_2}{R} \)

\(L_{21} = \frac{N_2 \phi_{21}}{i_1} = \frac{\phi_{21}}{i_1} = \frac{N_2 N_1}{R} \)

\(L_{22} = \frac{N_2 \phi_{22}}{i_2} = \frac{\phi_{22}}{i_2} = \frac{N_2^2}{R} \)
How to Use the Concept of Mutual Inductance

Two-Port Device:

\[
\begin{bmatrix}
 i_1 \\
 i_2 \\
\end{bmatrix}
= \begin{bmatrix}
 L_{11} & L_{12} \\
 L_{21} & L_{22} \\
\end{bmatrix}
\begin{bmatrix}
 \frac{di_1}{dt} \\
 \frac{di_2}{dt} \\
\end{bmatrix}
\]

Note: Reference direction of currents is into terminals at (+) side of voltage.

In time domain:

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
\end{bmatrix}
= \begin{bmatrix}
 L_{11} & L_{12} \\
 L_{21} & L_{22} \\
\end{bmatrix}
\begin{bmatrix}
 \frac{di_1}{dt} \\
 \frac{di_2}{dt} \\
\end{bmatrix}
\]

In phasor domain:

\[
\begin{bmatrix}
 v_1^{(\omega)} \\
 v_2^{(\omega)} \\
\end{bmatrix}
= \begin{bmatrix}
 j\omega L_{11} & j\omega L_{12} \\
 j\omega L_{21} & j\omega L_{22} \\
\end{bmatrix}
\begin{bmatrix}
 i_1^{(\omega)} \\
 i_2^{(\omega)} \\
\end{bmatrix}
\]

Also of note:
In some texts, since \(L_{12}\) and \(L_{21}\) are mutual inductances, they are called \(M_{12}\) and \(M_{21}\). Same thing.
$[\mathbf{Z}'] = [\mathbf{Y}]$

\[
\begin{bmatrix}
y_1 & y_{12} \\
y_{21} & y_{22}
\end{bmatrix}
\begin{bmatrix}
y_1' \\
y_2'
\end{bmatrix}
=
\begin{bmatrix}
y_1' \\
y_2'
\end{bmatrix}
\]
Assume high z/R ($R \to 0$)

\[
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} = \begin{bmatrix} Z & I_1 \\
& I_2
\end{bmatrix} \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} \Rightarrow \begin{bmatrix} Y_1 & V_1 \\
& V_2
\end{bmatrix} = \begin{bmatrix} I_1 \\
I_2
\end{bmatrix}
\]

pre-multiply both sides by $\begin{bmatrix} Z \end{bmatrix}^{-1}$